Advertisement

Afrika Matematika

, Volume 30, Issue 7–8, pp 1249–1266 | Cite as

Pointwise controllability as limit of internal controllability for the one dimensional Euler–Bernoulli equation

  • Akram Ben AissaEmail author
  • Mama Abdelli
Article
  • 35 Downloads

Abstract

This paper is devoted to prove the pointwise controllability of the Euler–Bernoulli beam equation. It is obtained as a limit of internal controllability of the same type of equation. Our approach is based on the techniques used in Fabre and Puel (Port Math 51:335–350, 1994).

Keywords

Beam equation Internal control Exact controllability Pointwise control 

Mathematics Subject Classification

93B07 93B05 93C20 35A15 

Notes

References

  1. 1.
    Ammari, K., Tucsnak, M.: Stabilization of Bernoulli–Euler beams by means of a pointwise feedback force. SIAM J. Control. Optim 39, 1160–1181 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ammari, K., Tucsnak, M.: Stabilization of second order equation by a class of unbounded feedbacks. ESAIM COCV 6, 361–386 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ammari, K., Liu, Z., Tucsnak, M.: Decay rates for a beam with pointwise force and moment feedback. Math. Control Signals Syst. 15, 229–255 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fabre, C., Puel, J.P.: Pointwise controllability as limit of internal controllability for the wave equation in one space dimension. Port. Math. 51, 335–350 (1994)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Haraux, A.: Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Port. Math. 46, 246–257 (1989)zbMATHGoogle Scholar
  6. 6.
    Haraux, A.: On a completion problem in the theory of distributed control of wave equations, Nonlinear partial differential equations and their applications. Collège de France Seminar, vol. 5, Paris, pp. 241-271 (1987–1988)Google Scholar
  7. 7.
    Haraux, A.: An alternative functional approach to exact controllability of reversible systems. Port. Math. 61, 399–437 (2004)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Haraux, A., Jaffard, S.: Pointwise and spectral control of plate vibrations. Rev. Mat. Iberoam. 1, 1–24 (1991)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jaffard, S.: Contrôle interne exact des vibrations d’une plaque rectangulaire. Port. Math. 47, 423–429 (1990)zbMATHGoogle Scholar
  10. 10.
    Lions, J.L.: Contrôlabilité exacte des systèmes distribués. Masson, Paris (1998)zbMATHGoogle Scholar
  11. 11.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences. Springer, New York (1983)zbMATHGoogle Scholar
  12. 12.
    Rebarber, R.: Exponential stability of coupled beams with dissipative joints: a frequency approach. SIAM J. Control Optim. 33, 1–28 (1995)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Tucsnak, M., Weiss, G.: Observation and control for operator semigroups, Birkhäuser Advanced Texts. Birkhäuser, Basler Lehrbücher (2009)Google Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.UR Analysis and Control of PDE’s, UR 13ES64, Department of Mathematics, Faculty of Sciences of MonastirUniversity of MonastirMonastirTunisia
  2. 2.Laboratory of Analysis and Control of PDEUniversity of Djillali LiabésSidi Bel AbbésAlgeria
  3. 3.University Mustapha Stamboli of MascaraMascaraAlgeria

Personalised recommendations