Afrika Matematika

, Volume 30, Issue 7–8, pp 1181–1204 | Cite as

Effective and ineffective treatment in a malaria model for humans in an endemic region

  • B. A. DanquahEmail author
  • F. Chirove
  • Jacek Banasiak


A mathematical model for malaria in humans was developed to explore the effect of treatment on the transmission and control of malaria. The model incorporates effective antimalarial and substandard drugs as treatment for infectious humans. The reproduction number \(R_{0}\) is evaluated, and shown to increase due to the presence of partially recovered humans. The disease free equilibrium is locally asymptotically stable when \(R_{0}<1\) and unstable when \(R_{0}>1\). The model exhibits backward, imperfect or transcritical bifurcation depending on the value of the disease induced death rate and \(R_{0}\). The numerical simulations, local and global sensitivity analysis suggest that the combination of effective control measures and the prompt use of effective antimalarial drugs that clear parasites quickly and give a long post-treatment prophylaxis may not only prevent transmission of infection to mosquitoes, but significantly reduce the number of infectious humans and the overall sources of infection.


Malaria Recrudescence Treatment Bifurcation Simulation 

Mathematics Subject Classification

92B05 92D30 93A30 



  1. 1.
    Agusto, F.B., Del Valle, S.Y., Blayneh, K.W., Ngonghala, C.N., Goncalves, M.J., Li, N., Zhao, R., Gong, H.: The impact of bed-net use on malaria prevalence. J. Theor. Biol. 320, 58–65 (2013)CrossRefGoogle Scholar
  2. 2.
    Agusto, F.B., Marcus, N., Okosun, K.O.: Application of optimal control to the epidemiology of malaria. Electron. J. Differ. Equ. 81, 1–22 (2012)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Anderson, B., Jackson, J., Sitharam, M.: Descartes’ rule of signs revisited. Am. Math. Mon. 105, 447–451 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Awuah, R.B., Asante, P.Y., Sakyi, L., Biney, A.A., Kushitor, M.K., Agyei, F., Aikins, A.D.G.: Factors associated with treatment-seeking for malaria in urban poor communities in Accra, Ghana. Malar. J. 17, 168 (2018)CrossRefGoogle Scholar
  5. 5.
    Badu, K., Brenya, R.C., Timmann, C., Garms, R., Kruppa, T.F.: Malaria transmission intensity and dynamics of clinical malaria incidence in a mountainous forest region of Ghana. Malar. World J. 4, 14 (2013)Google Scholar
  6. 6.
    Bate, R.: Making a killing: the deadly implications of the counterfeit drug trade. American Enterprise Institute (2008)Google Scholar
  7. 7.
    Cai, L.M., Lashari, A.A., Jung, I.H., Okosun, K.O., Seo, Y.I.: Mathematical analysis of a malaria model with partial immunity to reinfection. In: Abstract and Applied Analysis, Vol. 2013. Hindawi (2013)Google Scholar
  8. 8.
    Cariboni, J., Gatelli, D., Liska, R., Saltelli, A.: The role of sensitivity analysis in ecological modelling. Ecol. Model. 203, 167–182 (2007)CrossRefGoogle Scholar
  9. 9.
    Chitnis, N.R.: Using mathematical models in controlling the spread of malaria. University of Arizona, Ph.D. diss. (2005)Google Scholar
  10. 10.
    Chiyaka, C., Garira, W., Dube, S.: Transmission model of endemic human malaria in a partially immune population. Math. Comput. Model. 46, 806–822 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ghana Statistical Service: Ghana multiple indicator cluster survey with an enhanced malaria module and biomarker 2011 final report. Tech. Rep, Ghana Statistical Service (2011)Google Scholar
  12. 12.
    Huo, H.F., Qiu, G.M.: Stability of a mathematical model of malaria transmission with relapse. In: Abstract and Applied Analysis, Vol. 2014. Hindawi (2014)Google Scholar
  13. 13.
    Kasasa, S., Asoala, V., Gosoniu, L., Anto, F., Adjuik, M., Tindana, C., Smith, T., Owusu-Agyei, S., Vounatsou, P.: Spatio-temporal malaria transmission patterns in Navrongo demographic surveillance site, northern Ghana. Malar. J. 12, 63 (2013)CrossRefGoogle Scholar
  14. 14.
    Klassen, W.: Introduction: development of the sterile insect technique for African malaria vectors (2009)Google Scholar
  15. 15.
    Koram, K.A., Abuaku, B., Duah, N., Quashie, N.: Comparative efficacy of antimalarial drugs including ACTs in the treatment of uncomplicated malaria among children under 5 years in Ghana. Acta Trop. 95, 194–203 (2005)CrossRefGoogle Scholar
  16. 16.
    Lewis, E.R.: Network Models in Population Biology, vol. 7. Springer, Berlin (2012)Google Scholar
  17. 17.
    Marshall, J.M., Taylor, C.E.: Malaria control with transgenic mosquitoes. PLoS Med. 6, e1000020 (2009)CrossRefGoogle Scholar
  18. 18.
    Nayyar, G.M., Breman, J.G., Newton, P.N., Herrington, J.: Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa. Lancet Infect. Dis. 12, 488–496 (2012)CrossRefGoogle Scholar
  19. 19.
    Newton, P.N., Green, M.D., Mildenhall, D.C., Plançon, A., Nettey, H., Nyadong, L., Hostetler, D.M., Swamidoss, I., Harris, G.A., Powell, K., et al.: Poor quality vital anti-malarials in Africa-an urgent neglected public health priority. Malar. J. 10, 352 (2011)CrossRefGoogle Scholar
  20. 20.
    Ngwa, G.A., Shu, W.S.: A mathematical model for endemic malaria with variable human and mosquito populations. Math. Comput. Model. 32, 747–763 (2000)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Niger, A.M., Gumel, A.B.: Mathematical analysis of the role of repeated exposure on malaria transmission dynamics. Differ. Equ. Dyn. Syst. 16, 251–287 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Oduro, A.R., Anyorigiya, T., Hodgson, A., Ansah, P., Anto, F., Ansah, N.A., Atuguba, F., Mumuni, G., Amankwa, J.: A randomized comparative study of chloroquine, amodiaquine and sulphadoxine-pyrimethamine for the treatment of uncomplicated malaria in Ghana. Trop. Med. Int. Health 10, 279–284 (2005)CrossRefGoogle Scholar
  23. 23.
    Okosun, K.O., Ouifki, R., Marcus, N.: Optimal control strategies and cost-effectiveness analysis of a malaria model. BioSystems 111, 83–101 (2013)CrossRefGoogle Scholar
  24. 24.
    Parham, P.E., Michael, E.: Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620–626 (2009)CrossRefGoogle Scholar
  25. 25.
    Renschler, J.P., Walters, K.M., Newton, P.N., Laxminarayan, R.: Estimated under-five deaths associated with poor-quality antimalarials in sub-Saharan Africa. Am. J. Trop. Med. Hyg. 92, 119–126 (2015)CrossRefGoogle Scholar
  26. 26.
    Sayang, C., Gausseres, M., Vernazza-Licht, N., Malvy, D., Bley, D., Millet, P.: Treatment of malaria from monotherapy to artemisinin-based combination therapy by health professionals in rural health facilities in southern Cameroon. Malar. J. 8, 174 (2009)CrossRefGoogle Scholar
  27. 27.
    Stone, C.M., Lindsay, S.W., Chitnis, N.: How effective is integrated vector management against malaria and lymphatic filariasis where the diseases are transmitted by the same vector? PLoS Negl. Trop. Dis. 8, e3393 (2014)CrossRefGoogle Scholar
  28. 28.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books Publishing, New York (1994)zbMATHGoogle Scholar
  29. 29.
    Stuckey, E.M., Stevenson, J., Galactionova, K., Baidjoe, A.Y., Bousema, T., Odongo, W., Kariuki, S., Drakeley, C., Smith, T.A., Cox, J., et al.: Modeling the cost effectiveness of malaria control interventions in the highlands of western Kenya. PloS One 9, e107700 (2014)CrossRefGoogle Scholar
  30. 30.
    Tay, S., Danuor, S., Mensah, D., Acheampong, G., Abruquah, H., Morse, A., Caminade, C., Badu, K., Tompkins, A., Hassan, H.: Climate variability and malaria incidence in peri-urban, urban and rural communities around Kumasi, Ghana: a case study at three health facilities; Emena, Atonsu and Akropong. Int. J. Parasitol Res. 4, 83 (2012)CrossRefGoogle Scholar
  31. 31.
    Tchouassi, D., Quakyi, I., Addison, E., Bosompem, K., Wilson, M., Appawu, M., Brown, C., Boakye, D.: Characterization of malaria transmission by vector populations for improved interventions during the dry season in the Kpone-on-sea area of coastal Ghana. Parasit. Vectors 5, 212 (2012)CrossRefGoogle Scholar
  32. 32.
    Tumwiine, J., Mugisha, J., Luboobi, L.S.: A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity. Applied Mathematics and Computation 189, 1953–1965 (2007)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences 180, 29–48 (2002)MathSciNetCrossRefGoogle Scholar
  34. 34.
    World Health Organization: Guidelines for the treatment of malaria. World Health Organization, Tech. Rep. (2015)Google Scholar
  35. 35.
    World Health Organization: World malaria report 2016. World Health Organization, Tech. Rep. (2016)Google Scholar
  36. 36.
    World Health Organization: Ghana: WHO statistical profile. World Health Organization, Tech. Rep. (2017)Google Scholar
  37. 37.
    World Health Organization: World malaria report 2018. World Health Organization, Tech. Rep. (2018)Google Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu NatalPietermaritzburgSouth Africa
  2. 2.Department of Mathematics and Applied MathematicsUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations