Existence of weak and renormalized solutions of degenerated elliptic equation

  • Benali AharrouchEmail author
  • Jaouad Bennouna
  • Bouchra El hamdaoui


We consider the degenerate nonlinear elliptic equation (E) : \({\mathcal {A}}(u)= g-{\text {div}}(f)\), where \({\mathcal {A}}(u)=-{\text {div}}(a(x,u,\nabla u))\) is a Leray-Lions operator defined on \(W_0^{1,p(\cdot )}(\Omega )\) allowed to be non linear degenerated. The main gaol of this paper is to prove in first, an \(L^{\infty }(\Omega )\) estimate for the bounded solution of (E), and then the existence of a weak and a renormalized solution of (E), with \(f\in (L^{r(\cdot )}(\Omega ))^N, g\in L^{q(\cdot )}(\Omega )\), where \(r(\cdot )\) and \(q(\cdot )\) satisfies the following conditions :
$$\begin{aligned} {\left\{ \begin{array}{ll} r(x)>\frac{N}{p(x)-1}, r(x)\ge p'(x)&{}\quad \forall x \in \Omega ,\\ q(x)>\max \left( \frac{N}{p(x)},1\right) , q(x)\ge p'(x)&{}\quad \forall x \in \Omega . \end{array}\right. } \end{aligned}$$


Sobolev spaces with variable exponents Renormalized solutions Weak solution Quasilinear elliptic equations Boundary value problems 

Mathematics Subject Classification

35J70 35J67 46E35 



  1. 1.
    Aharouch, L., Bennouna, J.: Existence and uniqueness of solutions of unilateral problems in Orlicz spaces. Nonlinear Anal. 72(9–10), 3553–3565 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Acerbi, E., Mingione, G., Seregin, G.A.: Regularity results for parabolic systems related to a class of non-Newtonian fluids. Ann. de l’Institut Henri Poincaré (C) Anal. Non Linaire 21, 5–60 (2004)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bendahmane, M., Wittbold, P.: Renormalized solutions for nonlinear elliptic equations with variable exponents and \(L^1\) data. Nonlinear Anal. 70, 567–583 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Wittbold, P., Zimmermann, A.: Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponents and \(L^1\)-data. Nonlinear Anal. 72, 2990–3008 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bendahmane, M., Wittbold, P., Zimmermann, A.: Renormalized solutions for a nonlinear parabolic equation with variable exponents and \(L^1\)-data. J. Differ. Equations 249(6), 1483–1515 (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Betta, M.F., Mercaldo, A., Murat, F., Porzio, M.M.: Existence of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side a measure. J. Math. Pures Appl. 82, 90–124 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Blanchard, D., Murat, F.: Renormalized solutions of nonlinear parabolic problems with \(L^1\) data: existence and uniqueness. Proc. R. Soc. Edinb. Sect. A 127(6), 1137–1152 (1997)CrossRefzbMATHGoogle Scholar
  9. 9.
    Blanchard, D., Redwane, H.: Renormalized solutions for a class of nonlinear evolution problems. J. Math. Pures Appl. 77(2), 117–151 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Boccardo, L., Giachetti, D., Diaz, J.I., Murat, F.: Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms. J. Differ. Equations 106, 215–237 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Boccardo, L., Murat, F., Puel, J.P.: Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl. 152(4), 183–196 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Benilan, P., Boccardo, L., Gallouet, T., Gariepy, R., Pierre, M., Vazquez, J.L.: An \(L^1\)-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sci. Norm. Super. Pisa Cl. Sci. 22, 240–273 (1995)zbMATHGoogle Scholar
  13. 13.
    Benboubker, M., Chrayteh, H., El Moumni, M., Hjiaj, H.: Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data. Acta Math. Sin. Engl. Ser. 31, 151–169 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer-Verlag, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  16. 16.
    Dal Maso, G., Murat, F., Orsina, L., Prignet, A.: Renormalized solutions of elliptic equations with general measure data. Ann. Sc. Norm. Super. Pisa Cl. Sci. 28(4), 741–808 (1999)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Hewitt, E., Stromberg, K.: Real and Abstract Analysis. Springer, Berlin (1965)CrossRefzbMATHGoogle Scholar
  18. 18.
    Ruzicka, M.: Electrorheological Fluids: Modelling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)Google Scholar
  19. 19.
    Diperna, R.J., Lions, P.L.: On the Cauchy problem for the Boltzmann equations: global existence and weak stability. Ann. Math. 130, 321–366 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fan, X.L., Zhao, D.: On the generalised Orlicz-Sobolev Space \(W^{k, p(x)}(\Omega )\). J. Gansu Educ. Coll. 12(1), 1–6 (1998)Google Scholar
  21. 21.
    Ferone, V., Posteraro, M.R., Rakotoson, J.M.: \(L^{\infty }\)-estimates for nonlinear elliptic problems with p-growth in the gradient. J. Inequal. Appl. 3(2), 109–125 (1999)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Harjulehto, P., Hästö, P.: Sobolev Inequalities for Variable Exponents Attaining the Values \(1\) and \(n\). Publ. Mat. 52(2), 347–363 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rakotoson, J.M., Temam, R.: Relative rearrangement in quasilinear elliptic variational inequalities. Indiana Univ. Math. J. 36, 757–810 (1987)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Rakotoson, M.: Existence of bounded of some degenerate quasilinear elliptic equations. Commun. Partial Differ. Equations 12(6), 633–676 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rakotoson, J.M.: Uniquenesss of renormalized solutions in a T-set for \(L^1\) data problems and the link between various formulations. Indiana Univ. Math. J. 43(2), 685–702 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Rakotoson, J.M.: Rearrangement relatif dans les equationselliptiques quasi-linébaires avec un second membre distribution:application B un theoreme d’existence et de regularité. J. Differ. Equations 66, 391–419 (1987)CrossRefzbMATHGoogle Scholar
  27. 27.
    Rakotoson, J.M.: Rearrangement relatif dans les equationselliptiques quasi-linébaires avec un second membre distribution:application B un theoreme d’existence et de regularité. J. Differ. Equations 43(2), 685–702 (1994)Google Scholar
  28. 28.
    Stampacchia, G.: Le problème de Dirichlet pour les quations elliptiques du second ordre a\(\grave{c}\)oefficients discontinus. Ann. de l’Institut Fourier 15, 189–258 (1965)CrossRefzbMATHGoogle Scholar
  29. 29.
    Serrin, J.: Pathological solutions of elliptic differential equations. Ann. Sci. Norm. Super. Pisa 18(3), 385–387 (1964)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Sanchon, M., Urbano, J.M.: Entropy solutions for the \(p(x)\) Laplace equation. Trans. Am. Math. Soc. 12(361), 6387–6405 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zhao, D., Qiang, W.J., Fan, X.L.: On generalized Orlicz spaces \(L^{p(x)}(\Omega )\). J. Gansu Sci. 9(2), 1–7 (1997)Google Scholar
  32. 32.
    Zou, W., Li, F.: Existence of solutions for degenerate quasilinear elliptic equations. J. Nonlinear Anal. 73, 3069–3082 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar El MahrazUniversity of FezAtlas FezMorocco

Personalised recommendations