Ricci soliton and geometrical structure in a perfect fluid spacetime with torse-forming vector field

  • VenkateshaEmail author
  • H. Aruna Kumara


In this paper geometrical aspects of perfect fluid spacetime with torse-forming vector field \(\xi \) are described and Ricci soliton in perfect fluid spacetime with torse-forming vector field \(\xi \) are determined. Conditions for the Ricci soliton to be expanding, steady or shrinking are also given.


Perfect fluid spacetime Einstein field equation Energy momentum tensor Lorentz space Ricci soliton 

Mathematics Subject Classification

53B50 53C44 53C50 83C02 



The author’s is very much grateful to the reviewer’s for some valuable comments and many editorial corrections.


  1. 1.
    Ahsan, Z., Siddiqui, S.A.: Concircular curvature tensor and fluid spacetimes. Int. J. Theor. Phys. 48, 3202–3212 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blaga, A.M.: Solitons and geometrical structures in a perfect fluid spacetime. arXiv:1705.04094 [math.DG] (2017)
  3. 3.
    Bejan, C.L., Crasmareanu, M.: Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry. Ann. Glob. Anal. Geom. 46, 117–127 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Calvaruso, G., Zaeim, A.: A complete classification of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces. J. Geom. Phys. 80, 15–25 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Calvaruso, G., Perrone, A.: Ricci solitons in three-dimensional paracontact geometry. arXiv:1407.3458v1 (2014)
  6. 6.
    Chaki, M.C., Ray, S.: Spacetimes with covariant constant energy momentum tensor. Int. J. Theor. Phys. 35(5), 1027–1032 (1996)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chaki, M.C., Maity, R.K.: On quasi Einstein manifolds. Publ. Math. Debr. 57, 297–306 (2000)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chen, B., Yano, K.: Hypersurfaces of a conformally flat space. Tensor NS 26, 315–321 (1972)MathSciNetzbMATHGoogle Scholar
  9. 9.
    De, U.C., Velimirović, L.: Spacetimes with semisymmetric energy momentum tensor. Int. J. Theor. Phys. 54, 1779–1783 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    De, U.C., Ghosh, G.C.: On quasi-Einstein and special quasi-Einstein manifolds. In: Proceedings of the International Conference of Mathematics and its Applications, Kuwait University, April 5–7, 178–191 (2004)Google Scholar
  11. 11.
    De, U.C., Ghosh, G.C.: On quasi-Einstein manifolds. Period. Math. Hung. 48(12), 223–231 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Deszcz, R., Hotlos, M., Senturk, Z.: On curvature properties of quasi-Einstein hypersurfaces in semi-Euclidean spaces. Soochow J. Math. 27, 375–389 (2001)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Duggal, K.L., Sharma, R.: Symmetries of Spacetime and Riemannian Manifold, vol. 487. Springer, Berlin (1999)CrossRefGoogle Scholar
  14. 14.
    Güler, S., Demirbağ, S.A.: A study of generalized quasi Einstein spacetime with application in general relativity. Int. J. Theor. Phys. 55, 548–562 (2016)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hamilton, R.S.: The Ricci flow on surfaces. Contemp. Math. 71, 237–261 (1988)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Maartens, R., Mason, D.P., Tsamparlis, M.: Kinematic and dynamic properties of conformal Killing vectors in anisotropic fluids. J. Math. Phys. 27, 2987 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mallick, S., De, U.C.: Spacetimes with pseudosymmetric energy momentum tensor. Commun. Phys. 26(2), 121–128 (2016)CrossRefGoogle Scholar
  18. 18.
    Manjonjo, A.M., Maharaj, S.D., Moopanar, S.: Static models with conformal symmetry. Class. Quantum Gravity 35, 045015 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Moopanar, S., Maharaj, S.D.: Conformal Symmetries of Spherical Spacetimes. Int. J. Theor. Phys. 49, 1878–1885 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mason, D.P., Maartens, R.: Kinematics and dynamics of conformal collineations in relativity. J. Math. Phys. 28, 2182 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)zbMATHGoogle Scholar
  22. 22.
    Ray-Guha, S.: On perfect fluid pseudo Ricci symmetric spacetime. Tensor NS 67, 101–107 (2006)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Sharma, R., Ghosh, A.: Sasakian 3-manifold as a Ricci soliton represents the Heisenberg group. Int. J. Geom. Methods Mod. Phys. 8(1), 149–154 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Stephani, H.: General Relativity: an Introduction to the Theory of Gravitational Field. Cambridge University Press, Cambridge (1982)zbMATHGoogle Scholar
  25. 25.
    Tupper, B.O.J., Keane, A.J., Carot, J.: A classification of spherically symmetric spacetimes. Class. Quantum Gravity 29, 145016 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Venkatesha, Devaraja, M.N.: Certain results on \(K\)-paracontact and para Sasakian manifolds. J. Geom. 108, 939–952 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yano, K.: Integral Formulas in Riemannian Geometry. Marcel Dekker, New York (1970)zbMATHGoogle Scholar
  28. 28.
    Yano, K.: On torse forming direction in a Riemannian space. Proc. Imp. Acad. Tokyo 20, 340–345 (1994)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Yano, K., Kon, M.: Structure on Manifold, vol. 3. Series in pure mathematics. World Scientific publishing Co. Pte. Ltd., Singapore (1984)zbMATHGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsKuvempu UniversityShivamoggaIndia

Personalised recommendations