Some inequalities in relation with Fekete–Szegö problems specified by the Hadamard products of certain meromorphically analytic functions in the punctured unit disc

  • Hanaa M. ZayedEmail author
  • Hüseyin Irmak


In this investigation, in the light of the q-derivative operator and the q-analog of the well-known generalized Bessel function, several inequalities relating to Fekete–Szegö problems specified by the Hadamard product of certain meromorphic functions analytic in the punctured unit disc are first achieved and some consequences of them are then pointed out.


Hadamard product Subordination q-analysis Analytic Schwarz Meromorphic function Fekete–Szegö problem q-analog of the generalized Bessel function Inequalities in the complex plane 

Mathematics Subject Classification

30C45 30C50 



  1. 1.
    Abu-Risha, M.H., Annaby, M.H., Ismail, M.E.H., Mansour, Z.S.: Linear q-difference equations. Z. Anal. Anwend. 26, 481–494 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ali, R.M., Ravichandran, V.: Classes of meromorphic \(\alpha \)-convex functions. Taiwan. J. Math. 14, 1479–1490 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aouf, M.K., Mostafa, A.O., Zayed, H.M.: Convolution properties for some subclasses of meromorphic functions of complex order. Abstr. Appl. Anal. 2015, 973613 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    El-Ashwah, R.M., Aouf, M.K., Zayed, H.M.: Fekete–Szegö inequalities for certain subclass of meromorphic functions of complex order. Le Matematiche 68, 283–295 (2013)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  6. 6.
    Kac, V.G., Cheung, P.: Quantum Calculus. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Ma, W., Minda, D.: A unified treatment of some special classes of univalent functions. In: Li, Z., Ren, F., Lang, L., Zhang, S. (eds.) Proceedings of the Conference on Complex Analysis, pp. 157–169. International Press, Boston (1994)Google Scholar
  8. 8.
    Miller, J.E.: Convex meromorphic mapping and related functions. Proc. Am. Math. Soc. 25, 220–228 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Miller, S.S., Mocanu, P.T.: Differential Subordinations: Theory and Applications. Series on Monographs and Textbooks in Pure and Applied Mathematics, vol. 255. Marcel Dekker Inc, New York (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Mostafa, A.O., Aouf, M.K., Zayed, H.M.: Convolution properties for some subclasses of meromorphic bounded functions of complex order. Int. J. Open Probl. Complex Anal. 8, 12–19 (2016)CrossRefzbMATHGoogle Scholar
  11. 11.
    Mostafa, A.O., Aouf, M.K., Zayed, H.M., Bulboacă, T.: Convolution conditions for subclasses of meromorphic functions of complex order associated with basic Bessel functions. J. Egypt. Math. Soc. 25, 286–290 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Nehari, Z.: Conformal Mapping. Mc Graw-Hill, New York (1952)zbMATHGoogle Scholar
  13. 13.
    Pommerenke, C.: On meromorphic starlike functions. Pac. J. Math. 13, 221–235 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Silverman, H., Suchithra, K., Stephen, B.A., Gangadharan, A.: Coefficient bounds for certain classes of meromorphic functions. J. Inequal. Appl. 2008, 931981 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceMenofia UniversityShebin ElkomEgypt
  2. 2.Department of Mathematics, Faculty of ScienceÇankırı Karatekin UniversityÇankırıTurkey

Personalised recommendations