Advertisement

Afrika Matematika

, Volume 30, Issue 3–4, pp 651–662 | Cite as

Some fixed point theorems for \(S_F\)-contraction in complete fuzzy metric spaces

  • Surjeet Singh Chauhan
  • Mohammad Imdad
  • Gurjeet Kaur
  • Anupam SharmaEmail author
Article
  • 76 Downloads

Abstract

In this paper, we prove some fixed point theorems by introducing a new F-contraction namely \(S_F\)-contraction in fuzzy metric spaces by combining the idea of Wardowski’s (Fixed Point Theory Appl 2012, Article ID 94, 2012) and Secelean’s (Fixed Point Theory Appl 2013, Article ID 277, 2013) contractions in metric spaces and Grabiec’s (Fuzzy Sets Syst 125, 385–389, 1988) contraction in fuzzy metric spaces. An example is also given to support the results proved herein.

Keywords

F-contraction \(S_F\)-contraction Fixed point Fuzzy metric space 

Mathematics Subject Classification

74H10 54H25 

Notes

Acknowledgements

All the authors are thankful to the learned referees for their fruitful suggestions towards improvements of the paper. A. Sharma is thankful to National Board of Higher Mathematics (NBHM) for awarding Post Doctoral Fellowship.

References

  1. 1.
    Abbas, M., Ali, B., Romaguera, S.: Fixed and periodic of generalized contractions in metric spaces. Fixed Point Theory Appl. 2013, 11 (2013)Google Scholar
  2. 2.
    Agarwal, R.P., O’Regan, D., Shahzad, N.: Fixed point theory for generalized contractive maps of Meir–Keeler type. Math. Nachr. 276, 3–22 (2004)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Banach, S.: Sur les operations dans les ensembles abstraits et leur application aux equations integrals. Fundam. Math. 3, 133–181 (1922)zbMATHGoogle Scholar
  4. 4.
    Berinde, V.: on the approximation of fixed point of weak contraction mappings. Carpath. J. Math. 19(1), 7–22 (2003)zbMATHGoogle Scholar
  5. 5.
    Berinde, V.: Approximating fixed point of weak contractions using Picard’s iteration. Nonlinear Anal. Forum 9(1), 43–53 (2004)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Berinde, V.: Iterative Approximation of Fixed Points. Springer, Berlin (2007)zbMATHGoogle Scholar
  7. 7.
    Boyd, D.W., Wong, J.S.W.: On non linear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969)zbMATHGoogle Scholar
  8. 8.
    Brouwer, L.E.J.: Under Abbildung Von Mannigfalting Keiten. Math. Ann. 71, 97–115 (1912)Google Scholar
  9. 9.
    Ciric, L.B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45, 267–273 (1974)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Du, W.S.: Some new results and generalizations in metric fixed point theory. Nonlinear Anal. 73(5), 1439–1446 (2010)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Edelstein, M.: On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 37, 74–79 (1962)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Erceg, M.A.: Metric spaces in fuzzy set theory. J. Math. Anal. Appl. 69, 205–230 (1979)MathSciNetzbMATHGoogle Scholar
  13. 13.
    George, A., Veeramani, P.: On some results in fuzzy metric space. Fuzzy Sets Syst. 64, 395–399 (1994)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Geraghty, M.A.: On contractive mapping. Proc. Am. Math. Soc. 40(2), 604–608 (1973)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 125, 385–389 (1988)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Gregori, V., Sapena, A.: On Fixed-point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 125, 245–252 (2002)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Hardy, G.E., Rogers, T.D.: A generalization of a fixed point theorem of Reich. Can. Math. Bull. 16, 201–206 (1973)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Hussain, N., Salimi, P.: Suzuki–Wardowski type fixed point theorem for \(\alpha \)-\(GF\)-contractions. Taiwan. J. Math. 18, 1879–1895 (2014)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Imdad, M., Ahmed, M.A., Nafadi, H.A., Sharma, A.: Fixed point theorems for \({\cal{L}}\)-fuzzy mappings in \({\cal{L}}\)-fuzzy metric spaces. J. Int. Fuzzy Syst. 35, 683–692 (2018)Google Scholar
  20. 20.
    Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71–76 (1968)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kramosil, I., Michalek, J.: Fuzzy metric and statistical metric spaces. Kibernetika 11, 336–344 (1975)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Matkowski, J.: Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 62(2), 344–348 (1977)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Piri, H., Kumam, P.: Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 16 (2014)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Reich, S., Reich, S.: Kannan’s fixed point theorem. Boll. Un. Mat. Ital. 4(4), 1–11 (1971)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Rhoades, B.E.: Some theorems on weakly contractive maps. Nonlinear Anal. 47(4), 2683–2693 (2001)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Secelean, N. A.: Iterated function systems consisting of F-contractions. Fixed Point Theory Appl.2013, Article ID 277(2013).  https://doi.org/10.1186/16871812-2013-277
  27. 27.
    Suzuki, T.: A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 136(5), 1861–1869 (2008)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Suzuki, T.: A new type of fixed point theorem in metric spaces. Nonlinear Anal. 71, 5313–5317 (2009)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Wardowski, D.: Fixed point theory of a new type of contractive mapping in complete metric spaces. Fixed point theory Appl. 2012, Article ID 94, (2012)Google Scholar
  30. 30.
    Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)zbMATHGoogle Scholar
  31. 31.
    Zamfirescu, T.: Fixed point theorem in metric spaces. Arch. Math. 23, 292–298 (1992)zbMATHGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsChandigarh UniversityMohaliIndia
  2. 2.Department of MathematicsAligarh Muslim UniversityAligarhIndia
  3. 3.Punjab Technical UniversityJalandharIndia
  4. 4.Department of Mathematics and StatisticsIndian Institute of TechnologyKanpurIndia

Personalised recommendations