Advertisement

On retraction problem concerning inclusion of F-contractions in almost contractions

  • Xavier Alexius Udo-utunEmail author
Article
  • 3 Downloads

Abstract

We have established, in the context of metric spaces, that an F-contraction restricted to appropriate neighborhood of its fixed point is an almost contraction and obtain definition of retractions on complete metric spaces. We have illustrated such an inclusion using an example studied in Wardowski (Fixed Point Theory Appl 94:1–6, 2012) and in Minak et al. (Bull Belg Math Soc Simon Stevin 22:411–422, 2015).

Keywords

Almost contraction F-contraction Inclusion Picard operators Weakly Picard operators 

Mathematics Subject Classification

47H09 47H10 54H25 

Notes

Acknowledgements

The author wishes to convey gratitude to the reviewers and the Editor-in-Chief for comments which have made the paper gain much more clarity.

References

  1. 1.
    Agarwal, R.P.: Fixed Point Theory and Applications. Cambridge University Press, Cambridge (Maria Meehan and Donal O’Regan) (2004)Google Scholar
  2. 2.
    Alfuraidana, M.A., Bacharb, M., Khamsi, M.A.: Almost monotone contractions on weighted graphs. J. Nonlinear Sci. Appl. 9, 5189–5195 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Andres, J.: On the multivalued Poincare operators: topological methods in nonlinear analysis. J. Juliusz Schauder Center 10, 93 (1997)Google Scholar
  4. 4.
    Berinde, V., Pacurar, M.: Iterative Approximation of Fixed Points of Single-Valued Almost Contractions. Elsevier Inc, New York (2016)CrossRefzbMATHGoogle Scholar
  5. 5.
    Djebali, Smail: Lech Gorniewicz and Abdelghani Ouahab Solution Sets for Differential Equations and Inclusions. Walter de Gruyter GmbH, Berlin/Boston (2013)CrossRefGoogle Scholar
  6. 6.
    Gorniewicz, L.: Topological Fixed Point Theory of Multivalued Mappings. Springer, Dordrecht (2006)Google Scholar
  7. 7.
    Minak, G., Altun, I., Romaguera, S.: Recent developments about multivalued weakly Picard operators. Bull. Belg. Math. Soc. Simon Stevin 22, 411–422 (2015)Google Scholar
  8. 8.
    Rus, I.A., Petruşel, A., Petruşel, G.: Fixed Point Theory: 1950–2000. Romanian Contribution. House of the Book of Science, Cluj-Napoca (2002)Google Scholar
  9. 9.
    Wardowski, D.: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 94, 1–6 (2012)Google Scholar
  10. 10.
    Udo-utun, X.: On inclusion of \(F\)-contractions in \((\delta , k)\)-weak contractions. Fixed Point Theory Appl. 65, 1–6 (2014)Google Scholar
  11. 11.
    Udo-utun, X.A., Siddiqui, Z.U., Balla, M.Y.: An extension of the contraction mapping principle. Fixed Point Theory Apl. (Springer-Open) 2015, 162 (2015)Google Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of UyoUyoNigeria

Personalised recommendations