Advertisement

Fekete–Szegö functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator

  • Feras YousefEmail author
  • Tariq Al-Hawary
  • G. Murugusundaramoorthy
Article
  • 8 Downloads

Abstract

In this paper, we introduce a new subclass \(\mathcal {B}_{\Sigma }^{\zeta }(m,\gamma ,\lambda ;\varphi )\) of bi-univalent functions defined by a new differential operator of analytic functions involving binomial series due to Frasin (Bol Soc Paran Mat (in press), 2019) in the open unit disk. We obtain coefficient bounds for the Taylor–Maclaurin coefficients \(|a_{2}|\) and \(|a_{3}|\) of the function \(f\in \mathcal {B}_{\Sigma }^{\zeta }(m,\gamma ,\lambda ;\varphi )\). Furthermore, we solve the Fekete–Szegö functional problem for functions in \(\mathcal {B}_{\Sigma }^{\zeta }(m,\gamma ,\lambda ;\varphi )\). The results presented in this paper improve or generalize the earlier results of Peng and Han (Acta Math Sci 34(1):228–240, 2014) and Tang et al. (J Math Inequal 10(4):1063–1092, 2016).

Keywords

Analytic functions Univalent functions Bi-univalent functions Taylor–Maclaurin series Binomial series Coefficient inequalities Fekete–Szegö problems 

Mathematics Subject Classification

30C45 

Notes

Acknowledgements

The authors would like to thank the referees for their useful comments and suggestions to improve the original manuscript.

References

  1. 1.
    Al-Oboudi, F.M.: On univalent functions defined by generalized Sălăgean operator. Int. J. Math. Sci. 27, 1429–1436 (2004)zbMATHGoogle Scholar
  2. 2.
    Bulut, S.: Coefficient estimates for a class of analytic and bi-univalent functions. Novi Sad J. Math. 43(2), 59–65 (2013)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Brannan, D.A., Clunie, J.G.: Aspects of Contemporary Complex Analysis. Proceedings of the NATO Advanced Study Institute (University of Durham, Durham, July 1–20, 1979), Academic Press, New York (1980)Google Scholar
  4. 4.
    Frasin, B.A.: A new differential operator of analytic functions involving binomial series. Bol. Soc. Paran. Mat. (2018).  https://doi.org/10.5269/bspm.v38i5.40188 Google Scholar
  5. 5.
    Frasin, B.A.: Coefficient bounds for certain classes of bi-univalent functions. Hacettepe J. Math. Stat. 43(3), 383–389 (2014)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Frasin, B.A., Al-Hawary, T.: Initial Maclaurin coefficients bounds for new subclasses of bi-univalent functions. Theory Appl. Math. Comput. Sci. 5(2), 186–193 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Frasin, B.A., Aouf, M.K.: New subclasses of bi-univalent functions. Appl. Math. Lett. 24(9), 1569–1573 (2011)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Jahangiri, J.M., Hamidi, S.G.: Coefficient estimates for certain classes of bi-univalent functions. Int. J. Math. Math. Sci. 2013, 1–4 (2013).  https://doi.org/10.1155/2013/190560 MathSciNetzbMATHGoogle Scholar
  9. 9.
    Lewin, M.: On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 18, 63–68 (1967)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ma, W.C., Minda, D.: A Unified Treatment of Some Special Cases of Univalent Functions. Proceedings of the Conference on Complex Analysis (Tianjin, 1992), International Press, Cambridge, pp 157–169 (1994)Google Scholar
  11. 11.
    Netanyahu, E.: The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in \(\left|z\right|<1\). Arch. Ration. Mech. Anal. 32, 100–112 (1969)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Peng, Z., Han, Q.: On the coefficients of several classes of bi-uivalent functions. Acta Math. Sci. 34(1), 228–240 (2014)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Sălăgean, G.S.: Subclasses of univalent functions. In: Complex Analysis Fifth Romanian-Finnish Seminar, Springer, Heidelberg, pp 362–372 (1983)Google Scholar
  14. 14.
    Srivastava, H.M., Murugusundaramoorthy, G., Magesh, N.: Certain subclasses of bi-univalent functions associated with the Hohlov operator. Glob. J. Math. Anal. 1(2), 67–73 (2013)Google Scholar
  15. 15.
    Srivastava, H.M., Mishra, A.K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 23, 1188–1192 (2010)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Tang, H., Deng, G.T., Li, S.H.: Coefficient estimates for new subclasses of Ma-Minda biunivalent functions. J. Inequal. Appl. 2013(317), 1–10 (2013).  https://doi.org/10.1186/1029-242X-2013-317 Google Scholar
  17. 17.
    Tang, H., Srivastava, H.M., Sivasubramanian, S., Gurusamy, P.: The Fekete–Szegő functional problems for some subclasses of m-fold symmetric bi-univalent functions. J. Math. Inequal. 10(4), 1063–1092 (2016)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Yousef, F., Alroud, S., Illafe, M.: New Subclasses of Analytic and Bi-Univalent Functions Endowed with Coefficient Estimate Problems. arXiv:1808.06514 (2018)
  19. 19.
    Yousef, F., Frasin, B.A., Al-Hawary, T.: Fekete-Szegö Inequality for Analytic and Bi-univalent Functions Subordinate to Chebyshev Polynomials. Filomat 32(9), 3229–3236 (2018)Google Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceThe University of JordanAmmanJordan
  2. 2.Department of Applied Science, Ajloun CollegeAl-Balqa Applied UniversityAjlounJordan
  3. 3.School of Advanced SciencesVellore Institute of Technology (VIT)VelloreIndia

Personalised recommendations