Advertisement

The method for solving variational inequality problems with numerical results

  • Sarawut Suwannaut
  • Suthep Suantai
  • Atid KangtunyakarnEmail author
Article
  • 28 Downloads

Abstract

Using the concept of variational inequality method, we introduce the iterative scheme for finding a common element of the set of fixed point of a \(\kappa \)-strictly pseudo-contractive mapping and four sets of solutions of variational inequality problems. Furthermore, by using our main result, we give the numerical examples for supporting our results.

Keywords

Strictly pseudo-contractive mapping Variational inequality Inverse-strongly monotone 

Mathematics Subject Classification

47H09 47H10 90C33 

Notes

Acknowledgements

This research is supported by the Research Administration Division of King Mongkut’s Institute of Technology Ladkrabang and the Thailand Research Fund under the research project RTA578007.

References

  1. 1.
    Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–517 (1967)CrossRefzbMATHGoogle Scholar
  2. 2.
    Kinderlehrer, D., Stampaccia, G.: An Iteration to Variational Inequalities and Their Applications. Academic Press, New York (1990)Google Scholar
  3. 3.
    Geobel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  4. 4.
    Iiduka, H., Takahashi, W.: Strong convergence theorems for nonexpansive nonself-mappings and inverse-strongly-monotone mappings. J. Convex Anal. 11(1), 69–79 (2004)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Kangtunyakarn, A.: A new iterative scheme for fixed point problems of infinite family of \(\kappa _{i}\)-pseudo-contractive mappings, equilibrium problem, variational inequality problems. J. Glob. Optim. (2012).  https://doi.org/10.1007/s10898-012-9925-0
  6. 6.
    Kangtunyakarn, A.: Convergence theorem of \(\kappa \)-strictly pseudo-contractive mapping and a modification of generalized equilibrium problems. Fixed Point Theory Appl. 2012, 89 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Opial, Z.: Weak convergence of the sequence of successive approximation of nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)zbMATHGoogle Scholar
  9. 9.
    Xu, H.K.: An iterative approach to quadric optimization. J. Optim. Theory Appl. 116, 659–678 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Acedo, G.L., Xu, H.K.: Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 67, 2258–2271 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Iiduka, H.: Fixed point optimization algorithm and its application to network bandwidth allocation. J. Comput. Appl. Math. 236, 1733–1742 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections, vol. 2. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Stark, H., Yang, Y.: Vector Space Projections: A Numerical Approach to Signal and Image Processing, Neural Nets, and Optics. Wiley, New York (1998)zbMATHGoogle Scholar
  15. 15.
    Li, X.: Fine-granularity and spatially adaptive regularization for projection based image deblurring. IEEE Trans. Image Process. 20(4), 971–983 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation de-noising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Giannessi, F., Maugeri, A., Pardalos, P.M.: Equilibrium Problems: Nonsmooth Optimization and Variational Inequalities Models, vol. 58. Springer, Berlin (2002)zbMATHGoogle Scholar
  18. 18.
    Pardalos, P.M., Rassias, T.M., Khan, A.A.: Nonlinear Analysis and Variational Problems. Springer, New York (2010)CrossRefzbMATHGoogle Scholar
  19. 19.
    Floudas, C.A., Pardalos, P.M.: Encyclopedia of Optimization, 2nd edn. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar
  20. 20.
    Ceng, L.C., Yao, J.C.: Iterative algorithm for generalized set-valued strong nonlinear mixed variational-like inequalities. J. Optim. Theory Appl. 124, 725–738 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yao, J.C., Chadli, O.: Pseudomonotone Complementarity Problems and Variational Inequalities. Handbook of Generalized Convexity and Monotonicity, pp. 501–558. Kluwer Academic, Dordrecht (2005)zbMATHGoogle Scholar
  22. 22.
    Wang, G.Q., Cheng, S.S.: Fixed point theorems arising from seeking steady states of neural networks. Appl. Math. Model. 33, 499–506 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Roberts, J.S.: Artificial Neural Networks. McGraw-Hill Company, Singapore (1997)Google Scholar
  24. 24.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan Company, Eaglewood Cliffs, NJ (1994)zbMATHGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Sarawut Suwannaut
    • 1
  • Suthep Suantai
    • 2
  • Atid Kangtunyakarn
    • 3
    Email author
  1. 1.Department of Mathematics, Faculty of ScienceLampang Rajabhat UniversityLampangThailand
  2. 2.Department of Mathematics, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  3. 3.Department of Mathematics, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand

Personalised recommendations