Advertisement

Afrika Matematika

, Volume 30, Issue 1–2, pp 181–194 | Cite as

Positive integer solutions of some Diophantine equations in terms of integer sequences

  • Refik Keskin
  • Zafer ŞiarEmail author
Article
  • 108 Downloads

Abstract

In this paper, we define some new number sequences, which we represent as \( (B_{n}),(b_{n}),(y_{n})\) and present relations of these new sequences with each other. Then, we give all positive integer solutions of some Diophantine equations in terms of these new sequences.

Keywords

Generalized Fibonacci and Lucas numbers Pell equation Diophantine equation Balancing and cobalancing numbers 

Mathematics Subject Classification

11B37 11B39 

References

  1. 1.
    Adler, A., Cloury, J.E.: The Theory of Numbers: A Text and Source Book of Problems. Jones and Bartlett Publishers, Boston (1995)Google Scholar
  2. 2.
    Behera, A., Panda, G.K.: On the square roots of triangular numbers. Fibonacci Q. 37(2), 98–105 (1999)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Kalman, D., Mena, R.: The Fibonacci numbers-exposed. Math. Mag. 76, 167–181 (2003)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Karaatlı, O., Keskin, R.: On some Diophantine equations related to square Triangular and Balancing numbers. J. Algebra Number Theory Adv. Appl. 4(2), 71–89 (2010)zbMATHGoogle Scholar
  5. 5.
    Keskin, R.: Solutions of some quadratic Diophantine equations. Comput. Math. Appl. 60(8), 2225–2230 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Keskin, R., Karaatlı, O.: Some new properties of balancing numbers and square Triangular numbers. J. Integer Seq. 15, 3 (2012) (Article 12.1.4)Google Scholar
  7. 7.
    McDaniel, W.L.: Diophantine representation of Lucas sequences. Fibonacci Q. 33, 58–63 (1995)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Melham, R.: Conics which characterize certain Lucas sequences. Fibonacci Q. 35, 248–251 (1997)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Muskat, J.B.: Generalized Fibonacci and Lucas sequences and rootfinding methods. Math. Comput. 61, 365–372 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Nagell, T.: Introduction to Number Theory. Chelsea Publishing Company, New York (1981)zbMATHGoogle Scholar
  11. 11.
    Panda, G.K., Ray, P.K.: Cobalancing numbers and cobalancers. Int. J. Math. Math. Sci. 8, 1189–1200 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Potter, D.C.D.: Triangular square numbers. Math. Gaz. 56, 109–110 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rabinowitz, S.: Algorithmic manipulation of Fibonacci identities. Appl. Fibonacci Numbers 6, 389–408 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ribenboim, P.: My Numbers, My Friends. Springer, New York (2000)zbMATHGoogle Scholar
  15. 15.
    Walker, D.T.: On the Diophantine equation \( mX^{2}-nY^{2}=\pm 1,\). Am. Math. Mon. 74(5), 504–513 (1967)Google Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsSakarya UniversitySakaryaTurkey
  2. 2.Department of MathematicsBingöl UniversityBingölTurkey

Personalised recommendations