Advertisement

On fuzzy subsets in \(\Gamma \)-semihypergroup through left operator semihypergroup

  • Kostaq Hila
  • Saleem Abdullah
  • Muhammad Aslam
Article
  • 13 Downloads

Abstract

In this paper, some fundamental relationships of a \(\Gamma \)-semihypergroup and its operator semihypergroup in terms of fuzzy subsets, fuzzy hyperideals and fuzzy hyperideal extension are obtained. Using these in obtaining some characterization theorems of \(\Gamma \)-semihypergroups in terms of fuzzy subsets, we highlight the effectiveness of operator semihypergroups in the study of \(\Gamma \)-semihypergroups in terms of fuzzy subsets.

Keywords

\(\Gamma \)-semihypergroup Operator semihypergroup Fuzzy hyperideal 

Mathematics Subject Classification

20N20 04A72 

References

  1. 1.
    Abdullah, S., Hila, K., Aslam, M.: On bi-\(\Gamma \)-hyperideals of \(\Gamma \)-semihypergroups. Politeh. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 74(4), 79–90 (2012)MathSciNetMATHGoogle Scholar
  2. 2.
    Abdullah, S., Aslam, M., Hila, K.: Interval valued intuitionistic fuzzy sets in \(\Gamma \)-semihypergroups. Int. J. Mach. Learn. Cybern. 7(2), 217–228 (2016)CrossRefGoogle Scholar
  3. 3.
    Abdullah, S., Aslam, M., Anwar, T.: A note on \(M\)-hypersystems and \(N\)-hypersystems in \(\Gamma \)-semihypergroups. Quasigroups Relat. Syst. 19, 101–104 (2011)MathSciNetMATHGoogle Scholar
  4. 4.
    Anvariyeh, S.M., Mirvakili, S., Davvaz, B.: On \(\Gamma \)-hyperideals in \(\Gamma \)-semihypergroups. Carpath. J. Math. 26(1), 11–23 (2010)MathSciNetMATHGoogle Scholar
  5. 5.
    Corsini, P.: Prolegomena of hypergroup theory. Supplement to Riv. Mat. Pura Appl. Aviani Editore, Tricesimo. ISBN: 88-7772-025-5 (1993)Google Scholar
  6. 6.
    Corsini, P., Leoreanu, V.: Applications of hyperstructure theory. In: Advances in Mathematics, vol. 5, pp. xii+322. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  7. 7.
    Corsini, P., Shabir, M., Mahmood, M.: Semisipmle semihypergroups in terms of hyperideals and fuzzy hyperideals. Iran. J. Fuzzy Syst. 8(1), 95–111 (2011)MathSciNetMATHGoogle Scholar
  8. 8.
    Davvaz, B., Leoreanu-Fotea, V.: Hyperring Theory and Applications. International Academic Press, Palm Harbor (2007)MATHGoogle Scholar
  9. 9.
    Davvaz, B., Leoreanu-Fotea, V.: Structures of fuzzy \(\Gamma \)-hyperideals of \(\Gamma \)-semihypergroups. J. Mult. Valued Logic Soft Comput. 19(5–6), 519–535 (2012)MathSciNetGoogle Scholar
  10. 10.
    Davvaz, B.: Extensions of fuzzy hyperideals in \(H_{V}\)-semigroups. Soft Comput. 11(9), 829–837 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Davvaz, B.: Fuzzy hyperideals in semihypergroups. Ital. J. Pure Appl. Math. 8, 67–74 (2000)MathSciNetMATHGoogle Scholar
  12. 12.
    Davvaz, B.: A survey of fuzzy algebraic hyperstructures. Algebras Groups Geom. 27(1), 37–62 (2010)MathSciNetMATHGoogle Scholar
  13. 13.
    Dutta, T.K., Sardar, S.K., Majumder, S.K.: Fuzzy ideal extensions of \(\Gamma \)-semigroups. Int. Math. Forum 4(42), 2093–2100 (2009)MathSciNetMATHGoogle Scholar
  14. 14.
    Dutta, T.K., Sardar, S.K., Majumder, S.K.: Fuzzy ideal extensions of \(\Gamma \)-semigroups via its operator semigroups. Int. J. Contemp. Math. Sci. 4(30), 1455–1463 (2009)MathSciNetMATHGoogle Scholar
  15. 15.
    Heidari, D., Dehkordi, S.O., Davvaz, B.: \(\Gamma \)-semihypergroups and their properties. Politeh. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 72, 197–210 (2010)MathSciNetMATHGoogle Scholar
  16. 16.
    Hila, K., Abdullah, S.: A study on intuitionistic fuzzy sets in \(\Gamma \)-semihypergroups. J. Intell. Fuzzy Syst. 26, 1695–1710 (2014)MathSciNetMATHGoogle Scholar
  17. 17.
    Hila, K., Davvaz, B., Dine, J.: Study on the structure of \(\Gamma \)-semihypergroups. Commun. Algebra 40(8), 2932–2948 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hila, K., Kikina, L., Davvaz, B.: Intuitionistic fuzzy hyperideal extensions of semihypergroups. Thai J. Math. 13(2), 291–305 (2015)MathSciNetMATHGoogle Scholar
  19. 19.
    Jun, Y.B., Kondo, M.: On transfer principle of fuzzy BCK/BCI-algebras. Sci. Math. Jpn. 59(1), 35–40 (2004)MathSciNetMATHGoogle Scholar
  20. 20.
    Kondo, M., Dudek, W.A.: On the transfer principle in fuzzy theory. Mathw. Soft Comput. 12, 41–55 (2005)MathSciNetMATHGoogle Scholar
  21. 21.
    Kuroki, N.: Fuzzy bi-ideals in Semigroups. Comment. Math. Univ. St. Paul. 28, 17–21 (1979)MathSciNetMATHGoogle Scholar
  22. 22.
    Kuroki, N.: On fuzzy ideals and fuzzy bi-ideals in semigroups. Fuzzy Sets Syst. 5(2), 203–215 (1981)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Marty, F.: Sur uni generalization de la notion de group, 8th Congress Math. Scandenaves, Stockholm, pp. 45–49 (1934)Google Scholar
  24. 24.
    Mirvakili, S., Anvariyeh, S.M., Davvaz, B.: \(\Gamma \)-semihypergroups and regular relations. J. Math. 2013, 7 (2013)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Yaqoob, N., Aslam, M.: Prime \((m, n)\)- bi-\(\Gamma \)-hyperideals in \(\Gamma \)-semihypergroups. Appl. Math. Inf. Sci. 8(5), 2243–2249 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Saha, N.K.: On \(\Gamma \)-semigroup-II. Bull. Calcutta Math. Soc. 79, 331–335 (1987)MathSciNetMATHGoogle Scholar
  27. 27.
    Sen, M.K.: On \(\Gamma \)-semigroups. In: Algebra and its Applications, Int. Symp. New Delhi, 1981. Lecture Notes in Pure and Applied Mathematics, vol. 91, pp. 301–308. Dekker, New York (1984)Google Scholar
  28. 28.
    Sen, M.K., Saha, N.K.: On \(\Gamma \)-semigroup-I. Bull. Calcutta Math. Soc. 78, 180–186 (1986)MathSciNetMATHGoogle Scholar
  29. 29.
    Sardar, S.K., Majumder, S.K., Mandal, D.: A note on characterization of prime ideals of \(\Gamma \)-semigroups in terms of fuzzy subsets. Int. J. Contemp. Math. Sci. 4(30), 1465–1472 (2009)MathSciNetMATHGoogle Scholar
  30. 30.
    Sardar, S.K., Majumder, S.K.: A note on characterization of semiprime ideals of \(\Gamma \)-semigroups in terms of fuzzy subsets. Int. J. Pure Appl. Math. 56(3), 451–457 (2009)MathSciNetMATHGoogle Scholar
  31. 31.
    Vougiouklis, T.: Hyperstructures and their representations. In: Hadronic Press Monographs in Mathematics. Hadronic Press, Inc., Palm Harbor (1994). ISBN: 0-911767-76-2Google Scholar
  32. 32.
    Xie, X.Y.: Fuzzy ideal extension of semigroups. Soochow J. Math. 27(2), 125–138 (2001)MathSciNetGoogle Scholar
  33. 33.
    Zadeh, L.A.: Fuzzy Sets Inf. Control 8, 338–353 (1965)Google Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Computer Science, Faculty of Natural SciencesUniversity of GjirokastraGjirokastërAlbania
  2. 2.Department of MathematicsAbdul Wali Khan UniversityMardanPakistan
  3. 3.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations