Advertisement

Afrika Matematika

, Volume 26, Issue 7–8, pp 1609–1619 | Cite as

Some new Chebyshev type inequalities for functions whose derivatives belongs to \(L_{p}\) spaces

  • M. Emin Özdemir
  • Erhan Set
  • Ahmet Ocak AkdemirEmail author
  • M. Zeki Sarıkaya
Article

Abstract

Several researchers have studied on widely known Chebyshev type inequalities that have an important place in the field of mathematical analysis. In this paper, we obtain some new Chebyshev type inequalities for functions whose derivatives belongs to \(L_{p}\) spaces similar to Pachpatte’s results. Our results are generalized version of Pachpatte’s results and these give some new estimations for Chebyshev functional.

Keywords

Chebyshev type inequalities Hölder inequality \(L_{p}\) spaces 

Mathematics Subject Classification

Primary 26D15 26A07 

References

  1. 1.
    Pachpatte, B.G.: On Čebyšev type inequalities involving functions whose derivatives belong to \(L_{p}\) spaces. J. Inequal. Pure Appl. Math. 7(2) Article 58, (2006)Google Scholar
  2. 2.
    Čebyšev, P.L.: Sur les expressions approximatives des int ėgrales par les auters prises entre les mėmes limites. Proc. Math. Soc. Charkov 2, 93–98 (1882)Google Scholar
  3. 3.
    Heinig, H.P., Maligranda, L.: Chebyshev inequality in function spaces. Real Anal. Exch. 17, 211–247 (1991–1992)Google Scholar
  4. 4.
    Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer Academic Publishers, Dordrecht (1993)zbMATHCrossRefGoogle Scholar
  5. 5.
    Pachpatte, B.G.: On Ostrowski-Grüss-Čebyšev type inequalities for functions whose modulus of derivatives are convex. J. Inequal. Pure Appl. Math. 6(4) Article 128, (2005)Google Scholar
  6. 6.
    Sarıkaya, M.Z., Sağlam, A., Yıldırım, H.: On generalization of Cebysev type inequalities. Iran. J. Math. Sci. Inform. 5(1), 41–48 (2010)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Set, E., Sarıkaya, M.Z., Ahmad, F.: A generalization of Chebychev type inequalities for first differentiable mappings. Miskolc Math. Notes 12(2), 245–253 (2011)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Dragomir, S.S., Cerone, P., Roumeliotis, J.: A new generalizations of Ostrowski’s integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means. RGMIA Res. Rep. Coll. 2(1), (1999)Google Scholar

Copyright information

© African Mathematical Union and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. Emin Özdemir
    • 1
  • Erhan Set
    • 2
  • Ahmet Ocak Akdemir
    • 3
    Email author
  • M. Zeki Sarıkaya
    • 4
  1. 1.Department of Mathematics, K. K. Education FacultyAtaturk UniversityErzurumTurkey
  2. 2.Department of Mathematics, Faculty of Science and ArtsOrdu UniversityOrduTurkey
  3. 3.Department of Mathematics, Faculty of Science and LettersAğrı İbrahim Çeçen UniversityAğrıTurkey
  4. 4.Department of Mathematics, Faculty of Science and ArtsDüzce UniversityDüzceTurkey

Personalised recommendations