Afrika Matematika

, Volume 23, Issue 2, pp 145–162

Strategic insider trading equilibrium: a filter theory approach

Open Access


The continuous-time version of Kyle’s (Econometrica 53(6):1315–1336, 1985) model of asset pricing with asymmetric information is studied, and generalized in various directions, i.e., by allowing time-varying liquidity trading, and by having weaker a priori assumptions on the model. This extension is made possible by the use of filtering theory. We derive the optimal trade for an insider and the corresponding price of the risky asset; the insider’s trading intensity satisfies a deterministic integral equation, given perfect inside information.


Insider trading Equilibrium Strategic trade Linear filter theory Innovation equation 

Mathematics Subject Classification (2010)

60G35 62M20 93E10 93E20 


  1. 1.
    Admati A.R., Pfleiderer P.: A theory of intraday patterns: volume and price variability. Rev. Financ. Stud. 1(1), 3–40 (1988)CrossRefGoogle Scholar
  2. 2.
    Back K.: Insider trading in continuous time. Rev. Financ. Stud. 5(3), 387–409 (1992)CrossRefGoogle Scholar
  3. 3.
    Biagini F., Øksendal B.: A general stochastic calculus approach to insider trading. Appl. Math. Optim. 52, 167–181 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Davis M.H.A.: Linear Estimation and Stochastic Control. Chapman and Hall, London (1977)MATHGoogle Scholar
  5. 5.
    Davis M.H.A.: Lectures on Stochastic Control and Nonlinear Filtering. Tata Institute of Fundamental Research, Bombay (1984)MATHGoogle Scholar
  6. 6.
    Eide, I.B.: An equilibrium model for gradually revealed asymmetric information. University of Oslo 6/2007 (Preprint, 2007)Google Scholar
  7. 7.
    Glosten L.R., Milgrom P.R.: Bid, ask and transaction prices in a specialist market with heterogeneously informed traders. J. Financ. Econ. 14, 71–100 (1985)CrossRefGoogle Scholar
  8. 8.
    Grossman S.J., Stiglitz J.E.: On the impossibility of informationally efficient markets. Am. Econ. Rev. 70, 393–408 (1980)Google Scholar
  9. 9.
    Holden C.W., Subrahmanyam A.: Long-lived private information and imperfect competition. J. Finance XLVII(1), 247–270 (1992)CrossRefGoogle Scholar
  10. 10.
    Kallianpur G.: Stochastic Filtering Theory. Springer, Berlin (1980)MATHGoogle Scholar
  11. 11.
    Kalman R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. D 82, 35–45 (1960)CrossRefGoogle Scholar
  12. 12.
    Kyle A.S.: Continuous auctions and insider trading. Econometrica 53(6), 1315–1336 (1985)MATHCrossRefGoogle Scholar
  13. 13.
    Liptser R.S., Shiryaev A.N.: Statistics of Random Processes II. Springer, Berlin (1978)MATHGoogle Scholar
  14. 14.
    Øksendal B.: Stochastic Differential Equations, 6th edn. Springer, (2003)Google Scholar
  15. 15.
    Russo F., Vallois P.: Forward, backward and symmetric stochastic integration. Probab. Theory Relat. Fields 97, 403–421 (1993)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Russo F., Vallois P.: The generalized covariation process and Itô formula. Stoch. Process. Appl. 59, 81–104 (1995)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Russo F., Vallois P.: Stochastic calculus with respect to continuous finite quadratic variation processes. Stoch. Stoch. Rep. 70, 1–40 (2000)MathSciNetMATHGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Knut K. Aase
    • 1
    • 2
  • Terje Bjuland
    • 2
  • Bernt Øksendal
    • 1
    • 2
  1. 1.Department of Mathematics, Centre of Mathematics for Applications (CMA)University of OsloOsloNorway
  2. 2.Norwegian School of Economics and Business Administration (NHH)BergenNorway

Personalised recommendations