Afrika Matematika

, Volume 23, Issue 2, pp 135–143 | Cite as

Identities on harmonic and q-harmonic number sums

  • Toufik MansourEmail author


By partial fraction approach, we derive q-analog for several well known results on harmonic number sums.


Harmonic numbers Harmonic number sums q-Harmonic numbers q-Harmonic number sums Partial fraction approach 

Mathematics Subject Classification (2000)

05A19 05A30 11B83 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alzer H., Karayannakis D., Srivastava H.M.: Series representations for some mathematical constants. J. Math. Anal. Appl. 320, 145–162 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Berndt, B.C.: Ramanujan’s Notebooks, Springer, 1985. part IGoogle Scholar
  3. 3.
    Berndt, B.C.: Ramanujan’s Notebooks, Springer, 1994. part IVGoogle Scholar
  4. 4.
    Chu W.: Harmonic number identities and Hermite-Pade approximations to the logarithm function. J. Approx. Theory 137, 42–56 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Chu W.: Partial-fraction decompositions and harmonic number identities. J. Combin. Math. Combin. Comput. 60, 139–153 (2007)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chu W., De Donno L.: Hypergeometric series and harmonic number identities. Adv. in Appl. Math. 34, 123–137 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chu W., Zheng D.: Iinfinite series with harmonic numbers and central binomial coefficients. Int. J. Number Theory 5(3), 429–448 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Coffey M.W.: On some log-cosine integrals related to f(3),f(4), and f(6). J. Comput. Appl. Math. 159, 205–215 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Coffey M.W.: On one-dimensional digamma and polygamma series related to the evaluation of Feynman diagrams. J. Comput. Appl. Math. 183, 84–100 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Coffey M.W.: On a three-dimensional symmetric Ising tetrahedron, and contributions to the theory of the dilogarithm and Clausen functions. J. Math. Phys. 49, 043510-1–043510-32 (2008)Google Scholar
  11. 11.
    Flajolet P., Salvy B.: Euler sums and contour integral representation. Exp. Math. 7, 15–35 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kirschenhofer, P.: A note on alternating sums. Elect. J. Combin. 3(2), #R7 (1996)Google Scholar
  13. 13.
    Paule P., Schneider C.: Computer proofs of a new family of harmonic number identities. Adv. Appl. Math. 31, 359–378 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Prodinger, H.: Identities involving Harmonic numbers that are of interest for physicits. Utilitas Mathematica, to appearGoogle Scholar
  15. 15.
    Rassias T.M., Srivastava H.M.: Some classes of infinite series associated with the Riemann zeta function and polygamma functions and generalized harmonic numbers. Appl. Math. Comput. 131, 593–605 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Sofo A.: Integral forms of sums associated with harmonic numbers. Appl. Math. Comput. 207, 365–372 (2009)zbMATHCrossRefGoogle Scholar
  17. 17.
    Vermaseren J.A.: Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys. A14(13), 2037–2076 (1999)MathSciNetGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of HaifaHaifaIsrael

Personalised recommendations