Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Analysis of Integrated H2O–LiBr Absorption Cooling and Single-Effect Evaporation Desalination System

  • 20 Accesses


An analytical investigation, based on mass and energy, of an integrated system of H2O–LiBr absorption cooling and single-effect evaporation (SEE) desalination system, is presented. The integrated system is characterized by low energy demand and high overall efficiency. The effects of the temperatures of various absorption system components on the performance and design of the system are studied. The study shows suitable ranges of operating conditions and points to key design factors of the integrated system and its individual components to maximize the system outputs in terms of cooling effect and distilled water production. The required energy to power the proposed system may be supplied by solar collectors or waste heat from industrial processes. The generator, condenser, absorber, and evaporator temperature are varied from 75 to 90, 30 to 45, 30 to 40, and 2 to 6 °C, respectively. Results show that the increase in generator temperature has a significant effect on the increase in the refrigerant mass flow rate with a corresponding increase in COP and performance ratio (PR). Another important design parameter is the pressure of the desalination unit. Decreasing the desalination system pressure increases the produced distilled water flow rate and the system PR, at a given generator temperature. However, increasing the condenser and absorber temperatures has an adverse effect on the system performance. Increasing the evaporator temperature has a positive effect on system PR, and to less extent on COP. On the other hand, energy utilization factor-overall is introduced to assess the overall efficiency of the whole system. Nevertheless, the performance of the SEE desalination sub-system is limited by minimum generator temperature that should be considered in the design of the integrated system.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


C P :

Specific heat capacity (kJ/kg K)


Coefficient of performance (−)


Energy utilization factor-overall (−)

h :

Specific enthalpy (kJ/kg)


High pressure of absorption system (kPa)


Lithium bromide (kPa)


Low pressure of absorption system (kPa)


Mass flow rate (kg/s)


Performance ratio (−)

Q :

Heat transfer (kW)


Solution heat exchanger (−)

T :

Temperature (°C)

W :

Pump work (kW)

X :

Salinity (g/kg)








Cooling water








Feed/saturation liquid


The difference between vapor and liquid properties at saturation


Saturation vapor condition






Strong LiBr solution


Solution pump






Weak LiBr solution



ρ :



  1. 1.

    Fan, Y.; Luo, L.; Souyri, B.: Review of solar sorption refrigeration technologies: development and applications. Renew. Sustain. Energy Rev. 11(8), 1758–1775 (2007)

  2. 2.

    Dawoud, M.A.: The role of desalination in augmentation of water supply in GCC countries. Desalination 186(1–3), 187–198 (2005)

  3. 3.

    AlHashemi, R.; Zarreen, S.; AlRaisi, A.; AlMarzooqi, F.; Hasan, S.: A review of desalination trends in the gulf cooperation council countries. Int. Interdiscip. J. Sci. Res. 1(2), 72–96 (2014)

  4. 4.

    Herold, K.E.; Radermacher, R.: Advanced energy systems: absorption heat pumps. Mech. Eng. 111(8), 68 (1989)

  5. 5.

    Li, Z.; Sumathy, K.: Technology development in the solar absorption air-conditioning systems. Renew. Sustain. Energy Rev. 4(3), 267–293 (2000)

  6. 6.

    Herold, K.E.; Radermacher, R.; Klein, S.A.: Absorption Chillers and Heat Pumps, 2nd edn. CRC Press, Boca Raton (2016)

  7. 7.

    Chiranjeevi, C.; Srinivas, T.: Influence of vapor absorption cooling on humidification-dehumidification (HDH) desalination. Alex. Eng. J. 55(3), 1961–1967 (2016)

  8. 8.

    Lawal, D.; Antar, M.; Khalifa, A.; Zubair, S.; Al-Sulaiman, F.: Humidification-dehumidification desalination system operated by a heat pump. Energy Convers. Manag. 161, 128–140 (2018)

  9. 9.

    Lawal, D.U.; Zubair, S.M.; Antar, M.A.: Exergo-economic analysis of humidification-dehumidification (HDH) desalination systems driven by heat pump (HP). Desalination 443, 11–25 (2018)

  10. 10.

    Srikhirin, P.; Aphornratana, S.; Chungpaibulpatana, S.: A review of absorption refrigeration technologies. Renew. Sustain. Energy Rev. 5(4), 343–372 (2000)

  11. 11.

    Yassen, A.; Antar, M.A.; Khalifa, A.E.; El-Shaarawi, M.A.I.: Analysis of absorption cooling and MD desalination cogeneration system. Arab. J. Sci. Eng. (AJSE) 44(2), 1081–1095 (2019)

  12. 12.

    Agyenim, F.; Knight, I.; Rhodes, M.: Design and experimental testing of the performance of an outdoor LiBr/H2O solar thermal absorption cooling system with a cold store. Sol. Energy 84(5), 735–744 (2010)

  13. 13.

    Asdrubali, F.; Grignaffini, S.: Experimental evaluation of the performances of a H2O–LiBr absorption refrigerator under different service conditions. Int. J. Refrig 28(4), 489–497 (2005)

  14. 14.

    Kaushik, S.C.; Arora, A.: Energy and exergy analysis of single effect and series flow double effect water-lithium bromide absorption refrigeration systems. Int. J. Refrig 32(6), 1247–1258 (2009)

  15. 15.

    Shahata, A.I.; Aboelazm, M.M.; Elsafty, A.F.: Energy and exergy analysis for single and parallel flow double effect water-lithium bromide vapor absorption systems. Analysis 2(2), 85–94 (2012)

  16. 16.

    Hu, Y.: Advanced exergy analysis for a solar double stage absorption chiller. PhD Dissertation, Carnegie Mellon University (2012)

  17. 17.

    Prasartkaew, B.: Performance test of a small size LiBr-H2O absorption chiller. Energy Procedia 56(C), 487–497 (2014)

  18. 18.

    Horuz, I.; Callander, T.M.S.: Experimental investigation of a vapor absorption refrigeration system. Int. J. Refrig 27(1), 10–16 (2004)

  19. 19.

    Al-Ugla, A.A.; El-Shaarawi, M.A.I.; Said, S.A.M.: Alternative designs for a 24-hours operating solar-powered LiBr—Water absorption air-conditioning technology. Int. J. Refrig 53, 90–100 (2015)

  20. 20.

    Liao, X.; Radermacher, R.: Absorption chiller crystallization control strategies for integrated cooling heating and power systems. Int. J. Refrig 30(5), 904–911 (2007)

  21. 21.

    Shatat, M.; Worall, M.; Riffat, S.: Opportunities for solar water desalination worldwide: review. Sustain. Cities Soc. 9, 67–80 (2013)

  22. 22.

    Kalogirou, S.A.: Seawater desalination using renewable energy sources. Prog. Energy Combust. Sci. 31(3), 242–281 (2005)

  23. 23.

    Al-Ansari, A.; Ettouney, H.; El-Dessouky, H.: Water-zeolite adsorption heat pump combined with single effect evaporation desalination process. Renew. Energy 24(1), 91–111 (2001)

  24. 24.

    Al-Juwayhel, F.; El-Dessouky, H.; Ettouney, H.: Analysis of single-effect evaporator desalination systems combined with vapor compression heat pumps. Desalination 114(3), 253–275 (1997)

  25. 25.

    Parham, K.; Yari, M.; Atikol, U.: Alternative absorption heat transformer configurations integrated with water desalination system. Desalination 328, 74–82 (2013)

  26. 26.

    El-Dessouky, H.T.; Ettouney, H.M.: Fundamentals of Salt Water Desalination. Elsevier (2002)

  27. 27.

    Abdulrahim, H.K.; Darwish, M.A.: Thermal desalination and air conditioning using absorption cycle. Desalin. Water Treat. 55(12), 3310–3329 (2015)

  28. 28.

    Gude, V.G.; Nirmalakhandan, N.: Combined desalination and solar-assisted air-conditioning system. Energy Convers. Manag. 49(11), 3326–3330 (2008)

  29. 29.

    Mandani, F.; Ettouney, H.; El-Dessouky, H.: H2O -LiBr absorption heat pump for single-effect evaporation desalination process. Desalination 128(2), 161–176 (2000)

  30. 30.

    Threlkeld, J.L.: Thermal Environmental Engineering, 2nd edn. Prentice-Hall, Upper Saddle River (1970)

  31. 31.

    Sharqawy, M.H.; Lienhard, J.H.; Zubair, S.M.: Thermophysical properties of seawater: a review of existing correlations and data. Desalin. Water Treat. 16(10), 354–380 (2010)

  32. 32.

    Ketfi, O.; Merzouk, M.; Merzouk, N.K.; El Metenani, S.: Performance of a single effect solar absorption cooling system (Libr–H2O). Energy Procedia 74, 130–138 (2015)

  33. 33.

    Klein, S.A.; Alvarado, F.: Engineering equation solver. F-Chart Software, Madison, WI. 1 (2002)

  34. 34.

    Lansing, F.L.: Computer modeling of a single-stage lithium bromide/water absorption refrigeration unit. Interplanet. Netw. Prog. Rep. 42, 247–257 (1976)

Download references


The authors are grateful for the support provided for this work by King Fahd University of Petroleum and Minerals under Project DISC1501.

Author information

Correspondence to Mohamed A. Antar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaaban, A.M., Antar, M.A., Khalifa, A.E. et al. Analysis of Integrated H2O–LiBr Absorption Cooling and Single-Effect Evaporation Desalination System. Arab J Sci Eng (2020). https://doi.org/10.1007/s13369-020-04374-0

Download citation


  • Integrated system for dual production
  • Cooling H2O–LiBr absorption
  • Single-effect evaporation desalination
  • Thermodynamic analyses
  • Performance study