Advertisement

Rheological and Mechanical Properties of Heavy Density Concrete Including Barite Powder

  • 19 Accesses

Abstract

Heavy weight concretes (HWCs) or heavy density concretes are commonly used for radiation shielding in nuclear plant to ensure protection against X-rays and Gamma rays. It can also be required in other structures where a large mass is needed. This experimental study was effected to design a HWC, which can be used in bentonite-bored piles concreting in order to remove as much as possible the amount of mud that resides in the pile. In this study, barite is used as fine aggregate mixed with Portland cement to design HWC. Different barite concrete mixes were designed, where barite is used once as an addition while maintaining constant the amount of cement (400 kg/m3) and as a substituent, with different percentage (38, 46, 53 and 57%) to reach different concrete densities. The effect of barite on rheological, heat hydration and mechanical behavior of concrete was investigated. The use of barite as an addition leads to an increase in viscosity and yield stress of concrete; however, when barite is used as a cement substituent, a viscosity decrease is recorded. Barite concrete has shown a lower heat of hydration generation in comparison with a standard mix, which is correlated with compressive strength results.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Hassan beige, A.; Price, L.; Lin, E.: Emerging energy-efficiency and CO2 emission reduction technologies for cement and concrete production: a technical review. Renew. Sustain. Energy Rev. 16(8), 6220–6238 (2012)

  2. 2.

    Imbabi, S.M.; Carrigan, C.; McKenna, S.: Trends and developments in green cement and concrete technology. Int. J. Sustain. Built Environ. 1(2), 194–216 (2012)

  3. 3.

    Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H.: Sustainable cement production present and future. Cem. Concr. Res. 41(7), 642–650 (2011)

  4. 4.

    Boukhelkhal, D.; Boukendakdji, O.; Kenai, S.; Kadri, E.: Combined effect of mineral admixture and curing temperature on mechanical behavior and porosity of SCC. Adv. Concr. Constr. 6(1), 69–85 (2018)

  5. 5.

    Velay-Lizancos, M.; Martinez-Lage, I.; Vazquez-Burgo, P.: The effect of recycled aggregates on the accuracy of the maturity method on vibrated and self-compacting concretes. Arch. Civ. Mech. Eng. 19(2), 311–321 (2019)

  6. 6.

    Nawaz, W.; Abdalla, J.A.; Hawileh, R.A.; Alajmani, H.S.; Abuzayed, I.H.; Ataya, H.; Mohamed, H.A.: Experimental study on the shear strength of reinforced concrete beams cast with Lava lightweight aggregates. Arch. Civ. Mech. Eng. 19(4), 981–996 (2019)

  7. 7.

    Yahiaoui, W.; Kenai, S.; Menadi, B.; Kadri, E.H.: Durability of self-compacted concrete containing slag in hot climate. Adv. Concr. Constr. 5(3), 271–288 (2017)

  8. 8.

    Ling, T.C.; Poon, C.S.: High temperatures properties of barite concrete with cathode ray tube funnel glass. Fire Mater. 38(2), 279–289 (2014)

  9. 9.

    Kharita, M.H.; Takeyeddin, M.; Alnassar, M.; Yousef, S.: Development of special radiation shielding concretes using natural local materials and evaluation of their shielding characteristics. Prog. Nucl. Energy 50(1), 33–36 (2008)

  10. 10.

    Amritphale, S.; Anshul, A.; Chandra, N.; Ramakrishnan, N.: Development of celsian ceramics from fly ash useful for X-ray radiation-shielding application. J. Eur. Ceram. Soc. 27(16), 4639–4647 (2007)

  11. 11.

    Akkurt, I.; Akyıldırım, H.; Mavi, B.; Kilincarslan, S.; Basyigit, C.: Gamma-ray shielding properties of concrete including barite at different energies. Prog. Nucl. Energy 52(7), 620–623 (2010)

  12. 12.

    Gencel, O.; Brostow, W.; Ozel, C.; Filiz, M.: An investigation on the concrete properties containing colemanite. Int. J. Phys. Sci. 5(3), 216–225 (2010)

  13. 13.

    Gencel, O.: Physical and mechanical properties of concrete containing hematite as aggregates. Sci. Eng. Compos. Mater. 18(3), 191–199 (2011)

  14. 14.

    Gencel, O.; Bozkurt, A.; Kam, E.; Korkut, T.: Determining the gamma and neutron shielding characteristics of concretes containing different hematite proportions. Ann. Nucl. Energy 38(12), 2719–2723 (2011)

  15. 15.

    Ouda, A.S.: Development of high-performance heavy density concrete using different aggregates for gamma ray shielding. Prog. Nucl. Energy 79, 48–55 (2015)

  16. 16.

    Suresh, A.; Abraham, R.: Experimental study on heavy weight concrete using hematite and laterite as coarse aggregate. Int. J. Eng. Trends Technol. 28(4), 171–175 (2015)

  17. 17.

    Nambiar, S.; Yeow, J.T.W.: Polymer–composite materials for radiation protection. ACS Appl. Mater. Interfaces. 4(11), 5717–5726 (2012)

  18. 18.

    Özen, S.; Şengül, C.; Erenoğlu, T.; Çolak, U.; Reyhancan, I.; Taşdemı̇r, M.: Properties of heavyweight concrete for structural and radiation shielding purposes. Arabian J. Sci. Eng. 41(4), 1573–1584 (2016)

  19. 19.

    Bauchkar, S.D.; Chore, H.S.: Experimental studies on rheological properties of smart dynamic concrete. Adv. Concr. Constr. 5(3), 183–199 (2017)

  20. 20.

    Skripkiūnas, G.; Daukšys, M.: Dilatancy of cement slurries with chemical admixtures. J. Civ. Eng. Manag. 10(3), 227–233 (2004)

  21. 21.

    Wallevik, O.H.; Wallevik, J.E.: Rheology as a tool in concrete science: the use of rheographs and workability boxes. Cem. Concr. Res. 41, 1279–1288 (2011)

  22. 22.

    Fares, G.: Effect of slump cone orientation on the slump flow time (T50) and stability of sustainable self-compacting concrete containing limestone filler. Constr. Build. Mater. 77, 145–153 (2015)

  23. 23.

    Schwartzentruber, A.; Catherine, C.: Method of concrete equivalent mortar (CEM)—a new tool to design concrete containing admixture. Mater. Struct. 33(232), 475–482 (2000)

  24. 24.

    Skalny, J.P., Gebauer, J., Odler, I.: Materials science of concrete special volume: calcium hydroxide in concrete (workshop on the role of calcium hydroxide in concrete). In: Proceedings: the American Ceramic Society Florida, pp. 59–72 (2001)

  25. 25.

    Kaci, A.; Chaouche, M.; Andréani, P.A.; Brossas, H.: Rheological behavior of render mortars. Appl. Rheol. 19(1), 13794-1–13794-2 (2009)

  26. 26.

    Ferraris, C.F.; Brower, L.E.; Beaupre, D.; Wallevik, J.E.: Comparison of Concrete Rheometers: International Tests at MB (Cleveland, OH, USA), NIST: NISTIR 7154, Gaithersburg, (2004)

  27. 27.

    Maadani, O.; Chidiac, S.E.; Razaqpur, G.; Mailvaganam, N.P.: Controlling the quality of fresh concrete—a new approach. Mag. Concr. Res. 52(2), 353–363 (2000)

  28. 28.

    Gołaszewski, J.: Influence of viscosity enhancing agent on rheology and compressive strength of super plasticized mortars. J. Civ. Eng. Manag. 15(2), 181–188 (2009)

  29. 29.

    Golaszewski, J.; Szwabowski, J.: Influence of superplasticizers on rheological behavior of fresh cement mortars. Cem. Concr. Res. 34, 235–248 (2003)

  30. 30.

    Wallevik, O.H.; Feys, D.; Wallevik, J.E.; Khayat, K.H.: Avoiding inaccurate interpretations of rheological measurements for cement-based materials. Cem. Concr. Res. 78, 100–109 (2015)

  31. 31.

    Jang, K.P.; Kim, J.W.; Choi, M.S.; Kwon, S.H.: A new method to estimate rheological properties of lubricating layer for prediction of concrete pumping. Adv. Concr. Constr. 6(5), 465–483 (2018)

  32. 32.

    Güneyisi, E.; Gesoglu, M.; Naji, N.; İpek, S.: Evaluation of the rheological behavior of fresh self-compacting rubberized concrete by using the Herschel–Bulkley and modified Bingham models. Arch. Civ. Mech. Eng. 16(1), 9–19 (2016)

  33. 33.

    Estellé, P.; Lanos, C.; Perrot, A.: Processing the Couette viscometry data using a Bingham approximation in shear rate calculation. J. Non Newton. Fluid Mech. 154(1), 31–38 (2008)

  34. 34.

    Soualhi, H.; Kadri, E.H.; Ngo, T.T.; Bouvet, A.; Cussigh, F.; Benabed, B.: Rheology of ordinary and low-impact environmental concretes. J. Adhes. Sci. Technol. 29(20), 2160–2175 (2015)

  35. 35.

    Kabagire, D.; Diederich, P.; Yahia, A.: New insight into the equivalent concrete mortar approach for self-consolidating concrete. J. Sustain. Cem.-Based Mater. 4, 34–37 (2015)

  36. 36.

    Soualhi, H.; Kadri, E.H.; Ngo, T.T.; Bouvet, A.; Cussigh, F.; Kenai, S.: A vane rheometer for fresh mortar: development and validation. Appl. Rheol. 24, 22594 (2014)

  37. 37.

    Kadri, E.H.; Duval, R.; Aggoun, S.; Kenai, S.: Silica fume effect on the hydration heat and compressive strength of high performance. ACI Mater. J. 106, 107–113 (2009)

  38. 38.

    Saidani, K.; Ajam, L.; Ben Ouezdou, M.: Barite Powder as Sand substitution in concrete: effect on some mechanical properties. Constr. Build. Mater. 95(2015), 287–295 (2009)

  39. 39.

    Lekkam, M.; Benmounah, A.; Kadri, E.H.; Soualhi, H.; Kaci, A.: Influence of saturated activated carbon on the rheological and mechanical properties of cementitious materials. Constr. Build. Mater. 198, 411–422 (2019)

  40. 40.

    Soualhi, H.; Kadri, E.H.; Ngo, T.T.; Bouvet, A.; Cussigh, F.; Tahar, Z.E.: Design of portable rheometer with new vane geometry to estimate concrete viscosity. J. Civ. Eng. Manag. 23(3), 347–355 (2017)

  41. 41.

    Wallevik, J.E.: Relationship between the Bingham parameters and slump. Cem. Concr. Res. 36, 1214–1221 (2006)

  42. 42.

    Sedran, T.: Rheology and Rheometry of Concrete. An Application to Self-Compacting Concrete, Ph.D. thesis, Ecole Nationale des Ponts et Chaussées, Paris. 244(1999)

  43. 43.

    De Larrard, F.; Sedran, T.: Mixture proportioning of high-performance concrete. Cem. Concr. Res. 32, 1699–1704 (2002)

  44. 44.

    Toutou, Z.; Lanos, C.; Mélinge, Y.; Roussel, N.: Modèle de viscosité multi-échelle: de la pâte de ciment au micro-béton. Rhéologie 5, 1–9 (2004)

  45. 45.

    Yokoyama, S.; Arisawa, R.; Hisyamudin, M.N.N.; Murakami, K.; Maegawa, A.; Izaki, M.: Applicability of carbonated electric arc furnace slag to mortar. J. Phys. 352, 012049 (2012)

Download references

Author information

Correspondence to Emna Bouali.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bouali, E., Ayadi, A., Kadri, E. et al. Rheological and Mechanical Properties of Heavy Density Concrete Including Barite Powder. Arab J Sci Eng (2020) doi:10.1007/s13369-019-04331-6

Download citation

Keywords

  • Concrete
  • Heavy aggregates
  • Rheology
  • Compressive strength
  • Heat hydration