The Dynamic Evolution of Cavitation Vacuolar Cloud with High-Speed Camera

  • 41 Accesses


The dynamic model of a single cavitation bubble in the submerged cavitation water jet was established and solved by MATLAB to obtain its motion characteristics and pressure pulse change rules. Numerical simulation based on FLUENT to closer wall, empty bubble breaking form then influences the law of mechanics effect, with the increase in empty bubble, and the breaking time is reduced, but the maximum jet velocity and pressure increase gradually, on the mechanism of action of the solid wall by the fact that the combination of microfluidic and shock wave gradually plays a leading role, while plastic deformation and basic cavitation erosion are avoided. The maximum pressure and maximum jet velocity increase little, and the collapse time of cavitation is reduced. By comparing the grayscale images of the two combinations of jets, it can be found that the brightness of the vacuolar clouds in diameter (d) = 1.6 mm and pressure (P) = 15 MPa is slightly less than that in d = 1.2 mm and P = 30 MPa, indicating that the density of the vacuolar clouds and the dispersion is relatively high, while the increase in nozzle diameter leads to the increase in flow rate, which increases the shear layer of high-speed submerged jet in a static water. The pressure pulse generated by cavitating water jet hollow bubble failure is far greater than the linear superposition value of a single cavitation bubble. But the high-pressure shock wave value on the fixed wall and water hammer pressure are generated by microjet. The conclusion is also corresponding to the simulation results.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Fujisawa, N.; Kikuchi, T.; Fujisawa, K.; Yamagata, T.: Time-resolved observations of pit formation and cloud behavior in cavitating jet. Wear 386–387, 99–105 (2017)

  2. 2.

    Fujisawa, N.; Fujita, Y.; Yanagisawa, K.; Fujisawa, K.; Yamagata, T.: Simultaneous observation of cavitation collapse and shock wave formation in cavitating jet. Exp. Thermal Fluid Sci. 94, 159–167 (2018)

  3. 3.

    Hutli, E.A.F.; Nedeljkovic, M.S.: Frequency in shedding/discharging cavitation clouds determined by visualization of a submerged cavitating jet. J. Fluids Eng. 130, 021304-021304-8 (2008)

  4. 4.

    Gavaises, M.; Villa, F.; Koukouvinis, P.; Marengo, M.; Franc, J.-P.: Visualisation and les simulation of cavitation cloud formation and collapse in an axisymmetric geometry. Int. J. Multiph. Flow 68, 14–26 (2015)

  5. 5.

    Soyama, H.; Yamauchi, Y.; Adachi, Y.; Sato, K.; Shindo, T.; Oba, R.: High-speed observations of the cavitation cloud around a high-speed submerged water jet. JSME Int. J. Ser. B Fluids Therm. Eng. 38, 245–251 (1995)

  6. 6.

    Watanabe, R.; Yanagisawa, K.; Yamagata, T.; Fujisawa, N.: Simultaneous shadowgraph imaging and acceleration pulse measurement of cavitating jet. Wear 358–359, 72–79 (2016)

  7. 7.

    Gopalan, S.; Katz, J.: Flow structure and modeling issues in the closure region of attached cavitation. Phys. Fluids 12, 895–911 (2000)

  8. 8.

    Ganesh, H.; Mäkiharju, S.A.; Ceccio, S.L.: Interaction of a compressible bubbly flow with an obstacle placed within a shedding partial cavity. In: Journal of Physics: Conference Series, p. 012151 (2015).

  9. 9.

    Soyama, H.: Effect of nozzle geometry on a standard cavitation erosion test using a cavitating jet. Wear 297, 895–902 (2013)

  10. 10.

    Hutli, E.A.F.; Nedeljkovic, M.: Frequency in shedding/discharging cavitation clouds determined by visualization of a submerged cavitating jet. J. Fluids Eng. 130, 021304 (2008)

  11. 11.

    Petkovšek, M.; Dular, M.: Simultaneous observation of cavitation structures and cavitation erosion. Wear 300, 55–64 (2013)

  12. 12.

    Dular, M.; Bachert, B.; Stoffel, B.; Širok, B.: Relationship between cavitation structures and cavitation damage. Wear 257, 1176–1184 (2004)

  13. 13.

    Moffat, R.J.: Describing the uncertainties in experimental results. Exp. Thermal Fluid Sci. 1, 3–17 (1988)

  14. 14.

    Yamaguchi, A.; Shimizu, S.: Erosion due to impingement of cavitating jet. J. Fluids Eng. 109, 442–447 (1987)

  15. 15.

    Stanley, C.; Barber, T.; Rosengarten, G.: Re-entrant jet mechanism for periodic cavitation shedding in a cylindrical orifice. Int. J. Heat Fluid Flow 50, 169–176 (2014)

  16. 16.

    Watanabe, R.; Kikuchi, T.; Yamagata, T.; Fujisawa, N.: Shadowgraph imaging of cavitating jet. J. Flow Control Meas. Vis. 3, 106–110 (2015)

  17. 17.

    Arndt, R.E.A.: Vortex cavitation. In: Green, S.I. (ed.) Fluid Vortices, pp. 731–782. Springer, Dordrecht (1995)

  18. 18.

    Wang, Y.; Ye, B.; Wang, J.; Huang, C.: Re-entry jet and shock induced cavity shedding in cloud cavitating flow around an axisymmetric projectile. In: ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. (2018).

  19. 19.

    Bai, L.; Chen, X.; Zhu, G.; Xu, W.; Lin, W.; Wu, P.; et al.: Surface tension and quasi-emulsion of cavitation bubble cloud. Ultrason. Sonochem. 35, 405–414 (2017)

  20. 20.

    Nishimura, S.; Takakuwa, O.; Soyama, H.: Similarity law on shedding frequency of cavitation cloud induced by a cavitating jet. J. Fluid Sci. Technol. 7, 405–420 (2012)

  21. 21.

    Kozubková, M.; Rautová, J.; Bojko, M.: Mathematical model of cavitation and modelling of fluid flow in cone. Procedia Eng. 39, 9–18 (2012)

  22. 22.

    Zhang, K.; Zhu, X.; Ren, X.; Qiu, Q.; Shen, S.: Numerical investigation on the effect of nozzle position for design of high performance ejector. Appl. Thermal Eng. 126, 594–601 (2017)

  23. 23.

    Popovici, C.G.: HVAC system functionality simulation using ANSYS-Fluent. Energy Procedia 112, 360–365 (2017)

  24. 24.

    Marchelli, F.; Moliner, C.; Bosio, B.; Arato, E.: A CFD-DEM sensitivity analysis: the case of a pseudo-2D spouted bed. Powder Technol 353, 409–425 (2019)

  25. 25.

    Zhang, S.; Li, X.; Zhu, Z.: Numerical simulation of cryogenic cavitating flow by an extended transport-based cavitation model with thermal effects. Cryogenics 92, 98–104 (2018)

  26. 26.

    Hidalgo, V.; Luo, X.-W.; Escaler, B.Ji; Aguinaga, A.: Implicit large eddy simulation of unsteady cloud cavitation around a plane-convex hydrofoil. J. Hydrodyn. Ser. B 27, 815–823 (2015)

  27. 27.

    Singhal, C.; Murtaza, Q.; Parvej, : Simulation of critical velocity of cold spray process with different turbulence models. Mater. Today Proc. 5, 17371–17379 (2018)

  28. 28.

    Meyer, J.P.; Everts, M.; Coetzee, N.; Grote, K.; Steyn, M.: Heat transfer coefficients of laminar, transitional, quasi-turbulent and turbulent flow in circular tubes. Int. Commun. Heat Mass Transf. 105, 84–106 (2019)

  29. 29.

    Luo, X.-L.: A second-order pseudo-transient method for steady-state problems. Appl. Math. Comput. 216, 1752–1762 (2010)

  30. 30.

    Shukla, S.K.; Shukla, P.; Ghosh, P.: Evaluation of numerical schemes using different simulation methods for the continuous phase modeling of cyclone separators. Adv. Powder Technol. 22, 209–219 (2011)

  31. 31.

    Li, D.; Zha, W.; Liu, S.; Wang, L.; Lu, D.: Pressure transient analysis of low permeability reservoir with pseudo threshold pressure gradient. J. Pet. Sci. Eng. 147, 308–316 (2016)

  32. 32.

    Marcon, A.; Melkote, S.N.; Castle, J.; Sanders, D.G.; Yoda, M.: Effect of jet velocity in co-flow water cavitation jet peening. Wear 360–361, 38–50 (2016)

  33. 33.

    Watanabe, R.; Gono, T.; Yamagata, T.; Fujisawa, N.: Three-dimensional flow structure in highly buoyant jet by scanning stereo PIV combined with POD analysis. Int. J. Heat Fluid Flow 52, 98–110 (2015)

  34. 34.

    Watanabe, R.; Kikuchi, T.; Yamagata, T.; Fujisawa, N.: Shadowgraph imaging of cavitating jet. J. Flow Control Meas. Vis. 03, 106 (2015)

  35. 35.

    Oudheusden, B.; Scarano, F.; Van Hinsberg, N.; Watt, D.: Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp. Fluids 39, 86–98 (2005)

  36. 36.

    Arabnejad, M.H.; Amini, A.; Farhat, M.; Bensow, R.E.: Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation. Int. J. Multiph. Flow 119, 123–143 (2019)

  37. 37.

    Adrian, R.; Hanratty, T.J.: Large-scale modes of turbulent channel flow: transport and structure. J. Fluid Mech. 448, 53–80 (2001)

  38. 38.

    Lu, Y.-Y.; Liu, Y.; Li, X.-H.; Kang, Y.; Zhao, J.-X.: Numerical simulation on turbulent flow field in convergent-divergent nozzle. J. Coal Sci. Eng. (China) 15, 434 (2009)

Download references


The authors are grateful to the project supported by the Natural Science Foundation of China (NSFC, 51575245), Major Research Program of Jiangsu Province (BE2016161), Cultivation project for Academic Leader of Jiangsu Province ([2014] 23) and the members of cavitation research team in Jiangsu Mechanical department for the helpful comments on this work.

Author information

Correspondence to Yun Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sekyi-Ansah, J., Wang, Y., Tan, Z. et al. The Dynamic Evolution of Cavitation Vacuolar Cloud with High-Speed Camera. Arab J Sci Eng (2020).

Download citation


  • Vacuolar cloud
  • Grayscale
  • FDM
  • Nozzle diameter
  • Cavitation