Synthesis and Characterization of Ti–Fe Oxide Nanomaterials: Adsorption–Degradation of Methyl Orange Dye

  • Buzuayehu AbebeEmail author
  • H. C. Ananda Murthy
  • Yilkal Dessie
Research Article-Chemistry


Organic solvent-free impregnation method was used to synthesize titanium-iron oxides (TIOs) nanomaterial. The physical properties of synthesized TIOs materials were characterized by XRD, SEM–EDX, BET, UV–Vis, and FTIR analytical techniques. The appearance of iron oxide (IO) on SEM image, XRD, and EDX spectra, the redshift on UV–Vis spectra of TIO compared to titanium oxide (TO), and intensity reduction in FTIR spectra proves the good impregnation of IO in TO lattice. The Langmuir and Dubinin–Radushkevich adsorption isotherm test in the dark show the domination of physical adsorption. Furthermore, the Flory–Huggins isotherm model that has \(\Delta G\) = −11.40 kJ/mol and Fowler–Guggenheim model that has \(w\) = −106.5 kJ/mol confirm the spontaneity of the reaction and the presence of adsorbate–adsorbate repulsive interaction, respectively. The passing of the linear Weber–Morris intraparticle adsorption–diffusion plot through the origin and well-fitting of its coefficient of determination (R2) value relative to pseudo-first-order indicates the domination of adsorption–diffusion mechanism. On the methyl orange degradation experiment, as the percentage of IO increases from 4 to 12, its degradation efficiency decreases, i.e., TIO with 4% calcined at 500 °C (TIO-4) has higher degradation efficiency with k values of 0.03025.


Binary metal oxides Adsorption–photocatalysis Methyl orange Mechanism 



Authors are grateful to the management of Adama Science and Technology University for providing financial support. Authors also express deep acknowledgement to Dr. Dereje Tsegaye for his write up improvement and Mr. Guta Amanu for his assistance in the laboratory.

Authors’ contribution

All authors have contributed toward the achievement of the study in preparation of the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

13369_2019_4328_MOESM1_ESM.docx (499 kb)
Supplementary material 1 (DOCX 498 kb)


  1. 1.
    Basheer, A.A.: Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality 30, 402–406 (2018). CrossRefGoogle Scholar
  2. 2.
    Basheer, A.A.; Ali, I.: Stereoselective uptake and degradation of (±)-o, p-DDD pesticide stereomers in water-sediment system. Chirality 30, 1088–1095 (2018). CrossRefGoogle Scholar
  3. 3.
    Basheer, A.A.: New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 261, 583–593 (2018). CrossRefGoogle Scholar
  4. 4.
    Ali, I.: New generation adsorbents for water treatment. Chem. Rev. 112, 5073–5091 (2012). CrossRefGoogle Scholar
  5. 5.
    Ali, I.; Basheer, A.A.; Kucherova, A.; Memetov, N.; Pasko, T.; Ovchinnikov, K.; Pershin, V.; Kuznetsov, D.; Galunin, E.; Grachev, V.; Tkachev, A.: Advances in carbon nanomaterials as lubricants modifiers. J. Mol. Liq. 279, 251–266 (2019). CrossRefGoogle Scholar
  6. 6.
    Ali, I.; Basheer, A.A.; Mbianda, X.Y.; Burakov, A.; Galunin, E.; Burakova, I.; Mkrtchyan, E.; Tkachev, A.; Grachev, V.: Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 127, 160–180 (2019). CrossRefGoogle Scholar
  7. 7.
    Burakova, E.A.; Dyachkova, T.P.; Rukhov, A.V.; Tugolukov, E.N.; Galunin, E.V.; Tkachev, A.G.; Basheer, A.A.; Ali, I.: Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. J. Mol. Liq. 253, 340–346 (2018). CrossRefGoogle Scholar
  8. 8.
    Ali, I.; Al-Othman, Z.A.; Alwarthan, A.; Asim, M.; Khan, T.A.: Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environ. Sci. Pollut. Res. (2014). CrossRefGoogle Scholar
  9. 9.
    Ali, I.; Jain, C.K.: Advances in arsenic speciation techniques. Int. J. Environ. Anal. Chem. 84, 947–964 (2004). CrossRefGoogle Scholar
  10. 10.
    Ali, I.; Alothman, Z.A.; Sanagi, M.M.: Green synthesis of iron nano-impregnated adsorbent for fast removal of fluoride from water. J. Mol. Liq. 211, 457–465 (2015). CrossRefGoogle Scholar
  11. 11.
    Ali, I.; Khan, T.A.; Asim, M.: Removal of arsenate from groundwater by electrocoagulation method. Environ. Sci. Pollut. Res. 19, 1668–1676 (2012). CrossRefGoogle Scholar
  12. 12.
    Ali, I.; AL-Othman, Z.A.; Alwarthan, A.: Molecular uptake of congo red dye from water on iron composite nano particles. J. Mol. Liq. 224, 171–176 (2016). CrossRefGoogle Scholar
  13. 13.
    Ali, I.; Alothman, Z.A.; Alwarthan, A.: Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: kinetic, thermodynamics and mechanism of adsorption. J. Mol. Liq. 236, 205–213 (2017). CrossRefGoogle Scholar
  14. 14.
    Ali, I.; Aboul-Enein, H.Y.: Speciation of arsenic and chromium metal ions by reversed phase high performance liquid chromatography. Chemosphere 48, 275–278 (2002). CrossRefGoogle Scholar
  15. 15.
    Ali, I.; AL-Othman, Z.A.; Alharbi, O.M.L.: Uptake of pantoprazole drug residue from water using novel synthesized composite iron nano adsorbent. J. Mol. Liq. 218, 465–472 (2016). CrossRefGoogle Scholar
  16. 16.
    Ali, I.; Alothman, Z.A.; Al-Warthan, A.: Sorption, kinetics and thermodynamics studies of atrazine herbicide removal from water using iron nano-composite material. Int. J. Environ. Sci. Technol. 13, 733–742 (2016). CrossRefGoogle Scholar
  17. 17.
    Gallego-urrea, J.A.; Hammes, J.; Cornelis, G.; Hassellöv, M.: Coagulation and sedimentation of gold nanoparticles and illite in model natural waters: in fluence of initial particle concentration. IMPACT 3–4, 67–74 (2016). CrossRefGoogle Scholar
  18. 18.
    Tang, X.; Zheng, H.; Teng, H.; Sun, Y.; Guo, J.; Xie, W.; Yang, Q.; Chen, W.: Chemical coagulation process for the removal of heavy metals from water: a review. Desalin. Water Treat. 57, 1733–1748 (2016). CrossRefGoogle Scholar
  19. 19.
    Wang, D.K.; Elma, M.; Motuzas, J.; Hou, W.; Xie, F.: Rational design and synthesis of molecular-sieving, photocatalytic, hollow fiber membranes for advanced water treatment applications. J. Memb. Sci. 524, 163–173 (2017). CrossRefGoogle Scholar
  20. 20.
    Charles, J.; Bradu, C.; Morin-Crini, N.; Sancey, B.; Winterton, P.; Torri, G.; Badot, P.-M.; Crini, G.: Pollutant removal from industrial discharge water using individual and combined effects of adsorption and ion-exchange processes: chemical abatement. J. Saudi Chem. Soc. 20, 185–194 (2016). CrossRefGoogle Scholar
  21. 21.
    Pype, M.; Lawrence, M.G.; Keller, J.; Gernjak, W.: Reverse osmosis integrity monitoring in water reuse: the challenge to verify virus removal: A review. Water Res. 98, 384–395 (2016). CrossRefGoogle Scholar
  22. 22.
    Chen, F.; Ho, P.; Ran, R.; Chen, W.; Si, Z.; Wu, X.; Weng, D.; Huang, Z.; Lee, C.: Synergistic effect of CeO2 modified TiO2 photocatalyst on the enhancement of visible light photocatalytic performance. J. Alloy. Compd. 714, 560–566 (2017). CrossRefGoogle Scholar
  23. 23.
    Rashidi Nodeh, H.; Wan Ibrahim, W.A.; Ali, I.; Sanagi, M.M.: Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As(III) and As(V) species from environmental water samples. Environ. Sci. Pollut. Res. 23, 9759–9773 (2016). CrossRefGoogle Scholar
  24. 24.
    Ali, I.: Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: batch and column operations. J. Mol. Liq. 271, 677–685 (2018). CrossRefGoogle Scholar
  25. 25.
    Ali, I.; Alharbi, O.M.L.; Tkachev, A.; Galunin, E.; Burakov, A.; Grachev, V.A.: Water treatment by new-generation graphene materials: hope for bright future. Environ. Sci. Pollut. Res. 25, 7315–7329 (2018). CrossRefGoogle Scholar
  26. 26.
    Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Alwarthan, A.: Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water. Colloids Surf. B. Biointerfaces 171, 606–613 (2018). CrossRefGoogle Scholar
  27. 27.
    Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Badjah, A.Y.: Kinetics, thermodynamics, and modeling of amido black dye photodegradation in water using co/TiO2 nanoparticles. Photochem. Photobiol. 94, 935–941 (2018). CrossRefGoogle Scholar
  28. 28.
    Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Al-Mohaimeed, A.M.; Alwarthan, A.: Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water. Environ. Res. 170, 389–397 (2019). CrossRefGoogle Scholar
  29. 29.
    Alothman, Z.A.; Badjah, A.Y.; Ali, I.: Facile synthesis and characterization of multi walled carbon nanotubes for fast and effective removal of 4-tert-octylphenol endocrine disruptor in water. J. Mol. Liq. 275, 41–48 (2019). CrossRefGoogle Scholar
  30. 30.
    Ali, I.; Al-Othman, Z.A.; Al-Warthan, A.: Removal of secbumeton herbicide from water on composite nanoadsorbent. Desalin. Water Treat. 57, 10409–10421 (2016). CrossRefGoogle Scholar
  31. 31.
    Wu, L.; Yan, H.; Xiao, J.; Li, X.; Wang, X.; Zhao, T.: Characterization and photocatalytic properties of nano-Fe2O3–TiO2 composites prepared through the gaseous detonation method. Ceram. Int. 43, 14334–14339 (2017). CrossRefGoogle Scholar
  32. 32.
    Mianxin, S.; Liang, B.; Tianliang, Z.; Xiaoyong, Z.: Surface ζ potential and photocatalytic activity of rare earths doped TiO2. J. Rare Earths 26, 693–699 (2008). CrossRefGoogle Scholar
  33. 33.
    Wang, D.; Wang, Y.; Li, X.; Luo, Q.; An, J.; Yue, J.: Sunlight photocatalytic activity of polypyrrole: TiO2 nanocomposites prepared by ‘in situ’ method. Catal. Commun. 9, 1162–1166 (2008). CrossRefGoogle Scholar
  34. 34.
    Macák, J.M.; Tsuchiya, H.; Ghicov, A.; Schmuki, P.: Dye-sensitized anodic TiO2 nanotubes. Electrochem. Commun. 7, 1133–1137 (2005). CrossRefGoogle Scholar
  35. 35.
    An, H.; Zhou, J.; Li, J.; Zhu, B.; Wang, S.; Zhang, S.; Wu, S.; Huang, W.: Deposition of Pt on the stable nanotubular TiO2 and its photocatalytic performance. Catal. Commun. 11, 175–179 (2009). CrossRefGoogle Scholar
  36. 36.
    Wang, T.; Yang, G.; Liu, J.; Yang, B.; Ding, S.; Yan, Z.; Xiao, T.: Orthogonal synthesis, structural characteristics, and enhanced visible-light photocatalysis of mesoporous Fe2O3/TiO2 heterostructured microspheres. Appl. Surf. Sci. 311, 314–323 (2014)CrossRefGoogle Scholar
  37. 37.
    Wang, Z.; Liu, Y.; Huang, B.; Dai, Y.; Lou, Z.: Progress on extending the light absorption spectra of photocatalysts. PCCP 2, 2758–2774 (2014). CrossRefGoogle Scholar
  38. 38.
    Mamba, G.; Mishra, A.K.: Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 198, 347–377 (2016). CrossRefGoogle Scholar
  39. 39.
    Li, X.; Yu, J.; Jaroniec, M.: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603–2636 (2016). CrossRefGoogle Scholar
  40. 40.
    Wahyuningsih, S.; Ramelan, A.H.; Prasetyawati, L.; Saputri, L.N.M.Z.; Ichsan, S.; Kristiawan, Y.R.: The influence of Fe2O3 addition on the TiO2 structure and photoactivity properties. IOP Conf. Ser. Mater. Sci. Eng. 333, 012033 (2018). CrossRefGoogle Scholar
  41. 41.
    Abebe, B.; Ananda Murthy, H.C.: Synthesis and characterization of Ti–Fe oxide nanomaterials for lead removal. J. Nanomater. 2018, 1–10 (2018). CrossRefGoogle Scholar
  42. 42.
    Sharma, B.; Boruah, P.K.; Yadav, A.; Das, M.R.: TiO2–Fe2O3 nanocomposite heterojunction for superior charge separation and the photocatalytic inactivation of pathogenic bacteria in water under direct sunlight irradiation. J. Environ. Chem. Eng. 6, 134–145 (2018). CrossRefGoogle Scholar
  43. 43.
    Shojaie, A.; Fattahi, M.; Jorfi, S.; Ghasemi, B.: Synthesis and evaluations of—Fe3O4–TiO2–Ag nanocomposites for photocatalytic degradation of 4-chlorophenol (4-CP): effect of Ag and Fe compositions. Int. J. Ind. Chem. 9, 24–26 (2018)CrossRefGoogle Scholar
  44. 44.
    Jin, H.; Zhao, X.; Wu, Z.; Cao, C.; Guo, L.: Supercritical water synthesis of nano-particle catalyst on TiO2 and its application in supercritical water gasification of biomass. J. Exp. Nanosci. 12, 72–82 (2017). CrossRefGoogle Scholar
  45. 45.
    Lin, Y.P.; Mehrvar, M.: Photocatalytic treatment of an actual confectionery wastewater using Ag/TiO2/Fe2O3: optimization of photocatalytic reactions using surface response methodology. Catalysts 8, 409 (2018)CrossRefGoogle Scholar
  46. 46.
    Habibi, M.H.; Karimi, B.: Application of impregnation combustion method for fabrication of nanostructure CuO/ZnO composite oxide: XRD, FESEM, DRS and FTIR study. J. Ind. Eng. Chem. 20, 1566–1570 (2014). CrossRefGoogle Scholar
  47. 47.
    Mirmasoomi, S.R.; Mehdipour Ghazi, M.; Galedari, M.: Photocatalytic degradation of diazinon under visible light using TiO2/Fe2O3 nanocomposite synthesized by ultrasonic-assisted impregnation method. Sep. Purif. Technol. 175, 418–427 (2017). CrossRefGoogle Scholar
  48. 48.
    Dai, X.; Lu, G.; Hu, Y.; Xie, X.; Wang, X.; Sun, J.: Reversible redox behavior of Fe2O3/TiO2 composites in the gaseous photodegradation process. Ceram. Int. 45, 13187–13192 (2019). CrossRefGoogle Scholar
  49. 49.
    Sun, B.; Zhou, W.; Li, H.; Ren, L.; Qiao, P.; Xiao, F.; Wang, L.; Jiang, B.; Fu, H.: Magnetic Fe2O3/mesoporous black TiO2 hollow sphere heterojunctions with wide-spectrum response and magnetic separation. Appl. Catal. B Environ. 221, 235–242 (2018). CrossRefGoogle Scholar
  50. 50.
    Singh, J.; Sharma, S.; Basu, S.: Synthesis of Fe2O3/TiO2 monoliths for the enhanced degradation of industrial dye and pesticide via photo-Fenton catalysis. J. Photochem. Photobiol. C. 376, 32–42 (2019). CrossRefGoogle Scholar
  51. 51.
    Abbas, N.; Shao, G.N.; Haider, M.S.; Imran, S.M.; Soo, S.; Taik, H.: Sol–gel synthesis of TiO2–Fe2O3 systems: effects of Fe2O3 content and their photocatalytic properties. J. Ind. Eng. Chem. 39, 112–120 (2016). CrossRefGoogle Scholar
  52. 52.
    Alder, C.M.; Hayler, J.D.; Henderson, R.K.; Redman, A.M.; Shukla, L.; Shuster, L.E.; Sneddon, H.F.: Updating and further expanding GSK’s solvent sustainability guide. Green Chem. 18, 3879–3890 (2016). CrossRefGoogle Scholar
  53. 53.
    Abebe, B.; Taddesse, A.M.; Kebede, T.; Teju, E.; Diaz, I.: Fe–Al–Mn ternary oxide nanosorbent: synthesis, characterization and phosphate sorption property. J. Environ. Chem. Eng. 5, 1330–1340 (2017). CrossRefGoogle Scholar
  54. 54.
    Fu, Y.; Wei, Q.; Wang, X.; Shu, H.: Porous hollow α-Fe2O3@TiO2 core–shell nanospheres for superior lithium/sodium storage capability. J. Mater. Chem. A Mater. Energy Sustain. 3, 13807–13818 (2015). CrossRefGoogle Scholar
  55. 55.
    Saha, N.; Sarkar, A.; Ghosh, A.B.; Dutta, A.K.; Bhadu, G.R.; Paul, P.; Adhikary, B.: Highly active spherical amorphous MoS 2: facile synthesis and application in photocatalytic degradation of rose bengal dye and hydrogenation of nitroarenes. RSC Adv. 5, 88848–88856 (2015). CrossRefGoogle Scholar
  56. 56.
    Bayram, K.; Gedik, N.; Selin, P.; Serhan, A.: Band gap engineering and modifying surface of TiO2 nanostructures by Fe2O3 for enhanced-performance of dye sensitized solar cell. Mat. Sci. Semicon. Proc. 31, 363–371 (2015). CrossRefGoogle Scholar
  57. 57.
    Subramonian, W.; Wu, T.Y.; Chai, S.: Using one-step facile and solvent-free mechanochemical process to synthesize photoactive Fe2O3–TiO2 for treating industrial wastewater. J. Alloys Compd. 695, 496–507 (2017). CrossRefGoogle Scholar
  58. 58.
    Jamalluddin, N.A.; Abdullah, A.Z.: Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: effect of Fe(III) loading and calcination temperature. Ultrason. Sonochem. 18, 669–678 (2011). CrossRefGoogle Scholar
  59. 59.
    Boehm, H.P.: Chemical identification of surface groups. Adv. Catal. 16, 179–274 (1966). CrossRefGoogle Scholar
  60. 60.
    Bendjabeur, S.; Zouaghi, R.; Kaabeche, O.N.H.; Sehili, T.: Parameters affecting adsorption and photocatalytic degradation behavior of gentian violet under UV irradiation with several kinds of TiO2 as a photocatalyst. J. Chem. React. Eng, Int (2017). CrossRefGoogle Scholar
  61. 61.
    Ohtani, B.: Photocatalysis A to Z—what we know and what we do not know in a scientific sense. J. Photochem. Photobiol. C: Photochem Rev. 11, 157–178 (2010). CrossRefGoogle Scholar
  62. 62.
    Alipanahpour, E.; Ghaedi, M.; Asfaram, A.; Mehrabi, F.: Ultrasonics sonochemistry application of modificated magnetic nanomaterial for optimization of ultrasound-enhanced removal of Pb2+ ions from aqueous solution under experimental design: investigation of kinetic and isotherm. Ultrason. Sonochem. 36, 409–419 (2017). CrossRefGoogle Scholar
  63. 63.
    Yang, H.; Masse, S.; Rouelle, M.; Aubry, E.; Li, Y.; Roux, C.; Journaux, Y.; Li, L.; Coradin, T.: Magnetically recoverable iron oxide–hydroxyapatite nanocomposites for lead removal. Int. J. Environ. Sci. Technol. 12, 1173–1182 (2015). CrossRefGoogle Scholar
  64. 64.
    Mendiola-Alvarez, S.Y.; Hernández-Ramírez, A.; Guzmán-Mar, J.L.; Maya-Treviño, M.L.; Caballero-Quintero, A.; Hinojosa-Reyes, L.: A novel P-doped Fe2O3–TiO2 mixed oxide: Synthesis, characterization and photocatalytic activity under visible radiation. Today, Catal (2019). CrossRefGoogle Scholar
  65. 65.
    Fu, H.; Sun, S.; Yang, X.; Li, W.; An, X.; Zhang, H.; Dong, Y.: A facile coating method to construct uniform porous α-Fe2O3 @ TiO2 core–shell nanostructures with enhanced solar light photocatalytic activity. Powder Technol. 328, 389–396 (2018). CrossRefGoogle Scholar
  66. 66.
    Sui, Y.; Liu, Q.; Jiang, T.; Guo, Y.: Synthesis of nano-TiO2 photocatalysts with tunable Fe doping concentration from Ti-bearing tailings. Appl. Surf. Sci. 428, 1149–1158 (2018). CrossRefGoogle Scholar
  67. 67.
    Baniamerian, H.; Safavi, M.; Alvarado-Morales, M.; Tsapekos, P.; Angelidaki, I.; Shokrollahzadeh, S.: Photocatalytic inactivation of vibrio fischeri using Fe2O3–TiO2-based nanoparticles. Environ. Res. 166, 497–506 (2018). CrossRefGoogle Scholar
  68. 68.
    Cheng, L.; Qiu, S.; Chen, J.; Shao, J.; Cao, S.: A practical pathway for the preparation of Fe2O3 decorated TiO2 photocatalyst with enhanced visible-light photoactivity. Mater. Chem. Phys. J. 190, 53–61 (2017). CrossRefGoogle Scholar
  69. 69.
    Subramonian, W.; Wu, T.Y.; Chai, S.: Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe2O3–TiO2: treatment efficiency and characterizations of reused photocatalyst. J. Environ. Manage. 187, 298–310 (2017). CrossRefGoogle Scholar
  70. 70.
    Abdel-Wahab, A.-M.; Al-Shirbini, A.-S.; Mohamed, O.; Nasr, O.: Photocatalytic degradation of paracetamol over magnetic flower-like TiO2/Fe2O3 core–shell nanostructures. J. Photochem. Photobiol. A Chem. 347, 186–198 (2017). CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2020

Authors and Affiliations

  1. 1.Department of Applied Chemistry, School of Applied Natural SciencesAdama Science and Technology UniversityAdamaEthiopia

Personalised recommendations