Advertisement

Application of Desirability Approach to Optimize the Control Factors in Cryogenic Diamond Burnishing

  • 53 Accesses

Abstract

Cryogenic diamond burnishing is an impactful method to enhance the functional performance of the product. In this article, an experimental study on the diamond burnishing of 17-4 precipitation hardenable stainless steel in a cryogenic cooling condition has been presented. This material has excellent corrosion resistance, high strength and enormous applications in the manufacturing industries. The control variables were namely burnishing force, burnishing feed and burnishing force have been studied and modeled for the output responses explicitly surface hardness and surface roughness. The influence of control variables on performance features has been analyzed using response surface graphs. The significant influence of burnishing conditions on the output responses was established by analysis of variance. Desirability function approach has been employed to optimize the multi-performance characteristics. At the corresponding highest desirability, the optimal process parameter combination was found to be burnishing feed = 0.053 mm/rev, burnishing speed = 31.29 m/min and burnishing force = 200 N which yields a minimum surface roughness = 0.199 µm and maximum surface hardness = 397.48 HV. The maximum percentage of error among the predicted and experimental results was found to be 10% and 2%, respectively, for surface roughness and surface hardness. The investigational findings were observed to be in agreement with the predicted value with permissible deviation.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. 1.

    Maximov, J.T.; Anchev, A.P.; Duncheva, G.V.; Ganev, N.; Selimov, K.F.: Influence of the process parameters on the surface roughness, micro-hardness, and residual stresses in slide burnishing of high-strength aluminum alloys. J. Braz. Soc. Mech. Sci. Eng. 39(8), 3067–3078 (2016). https://doi.org/10.1007/s40430-016-0647-y

  2. 2.

    Sachin, B.; Narendranath, S.; Chakradhar, D.: Effect of cryogenic diamond burnishing on residual stress and microhardness of 17-4 PH stainless steel. Mater. Today Proc. 5, 18393–18399 (2018). https://doi.org/10.1016/j.matpr.2018.06.179

  3. 3.

    Ma, J.; Atabaki, M.M.; Liu, W.; Pillai, R.; Kumar, B.; Vasudevan, U.; Kovacevic, R.: Laser-based welding of 17-4 PH martensitic stainless steel in a tubular butt joint configuration with a built-in backing bar. Opt. Laser Technol. 82, 38–52 (2016). https://doi.org/10.1016/j.optlastec.2016.02.012

  4. 4.

    Mukhopadhyay, S.; Das, S.; Mukhopadhyay, G.; Bhattacharyya, S.; Palit, P.: Improving the property of a water box nozzle made of 17-4PH steel by suitable heat treatment. Eng. Fail. Anal. 49, 137–140 (2015). https://doi.org/10.1016/j.engfailanal.2014.11.011

  5. 5.

    Yildiz, Y.; Nalbant, M.: A review of cryogenic cooling in machining processes. Int. J. Mach. Tools Manuf. 48, 947–964 (2008). https://doi.org/10.1016/j.ijmachtools.2008.01.008

  6. 6.

    Hong, S.Y.; Zhao, Z.: Thermal aspects, material considerations and cooling strategies in cryogenic machining. Clean Technol. Environ. Policy 1, 107–116 (1999). https://doi.org/10.1007/s100980050016

  7. 7.

    Korzynski, M.; Dudek, K.; Palczak, A.; Kruczek, B.; Kocurek, P.: Experimental models and correlations between surface parameters after slide diamond burnishing. Meas. Sci. Rev. 18, 123–129 (2018). https://doi.org/10.1515/msr-2018-0018

  8. 8.

    Toboła, D.; Kania, B.: Phase composition and stress state in the surface layers of burnished and gas nitrided Sverker 21 and Vanadis 6 tool steels. Surf. Coat. Technol. 353, 105–115 (2018). https://doi.org/10.1016/j.surfcoat.2018.08.055

  9. 9.

    Maximov, J.T.; Duncheva, G.V.; Anchev, A.P.; Dunchev, V.P.: Crack resistance enhancement of joint bar holes by slide diamond burnishing using new tool equipment. Int. J. Adv. Manuf. Technol. (2019). https://doi.org/10.1007/s00170-019-03405-x

  10. 10.

    Okada, M.; Shinya, M.; Matsubara, H.; Kozuka, H.; Tachiya, H.; Asakawa, N.; Otsu, M.: Development and characterization of diamond tip burnishing with a rotary tool. J. Mater. Process. Technol. 244, 106–115 (2017). https://doi.org/10.1016/j.jmatprotec.2017.01.020

  11. 11.

    Świrad, S.: The surface texture analysis after sliding burnishing with cylindrical elements. Wear 271, 576–581 (2011). https://doi.org/10.1016/j.wear.2010.05.005

  12. 12.

    Maximov, J.T.; Duncheva, G.V.; Anchev, A.P.; Ganev, N.; Amudjev, I.M.; Dunchev, V.P.: Effect of slide burnishing method on the surface integrity of AISI 316Ti chromium–nickel steel. J. Braz. Soc. Mech. Sci. Eng. 40, 194 (2018). https://doi.org/10.1007/s40430-018-1135-3

  13. 13.

    Korzynski, M.; Lubas, J.; Swirad, S.; Dudek, K.: Surface layer characteristics due to slide diamond burnishing with a cylindrical-ended tool. J. Mater. Process. Technol. 211, 84–94 (2011). https://doi.org/10.1016/j.jmatprotec.2010.08.029

  14. 14.

    Sachin, B.; Narendranath, S.; Chakradhar, D.: Experimental evaluation of diamond burnishing for sustainable manufacturing. Mater. Res. Express 5, 106514 (2018). https://doi.org/10.1088/2053-1591/aadb0a

  15. 15.

    Rao, C.M.; Rao, S.S.; Herbert, M.A.: Development of novel cutting tool with a micro-hole pattern on PCD insert in machining of titanium alloy. J. Manuf. Process. 36, 93–103 (2018). https://doi.org/10.1016/j.jmapro.2018.09.028

  16. 16.

    Yang, S.; Umbrello, D.; Dillon, O.W.; Puleo, D.A.; Jawahir, I.S.: Cryogenic cooling effect on surface and subsurface microstructural modifications in burnishing of Co–Cr–Mo biomaterial. J. Mater. Process. Technol. 217, 211–221 (2015). https://doi.org/10.1016/j.jmatprotec.2014.11.004

  17. 17.

    Caudill, J.; Schoop, J.; Jawahir, I.S.: Correlation of surface integrity with processing parameters and advanced interface cooling/lubrication in burnishing of Ti–6Al–4V alloy. Adv. Mater. Process. Technol. 0698, 1–14 (2018). https://doi.org/10.1080/2374068X.2018.1511215

  18. 18.

    Tang, J.; Luo, H.Y.; Zhang, Y.B.: Enhancing the surface integrity and corrosion resistance of Ti–6Al–4V titanium alloy through cryogenic burnishing. Int. J. Adv. Manuf. Technol. (2016). https://doi.org/10.1007/s00170-016-9000-y

  19. 19.

    Pu, Z.; Yang, S.; Song, G.L.; Dillon, O.W.; Puleo, D.A.; Jawahir, I.S.: Ultrafine-grained surface layer on Mg–Al–Zn alloy produced by cryogenic burnishing for enhanced corrosion resistance. Scr. Mater. 65, 520–523 (2011). https://doi.org/10.1016/j.scriptamat.2011.06.013

  20. 20.

    Li, J.; Ma, C.; Ma, Y.; Li, Y.; Zhou, W.; Xu, P.: Medium optimization by combination of response surface methodology and desirability function: an application in glutamine production. Appl. Microbiol. Biotechnol. 74, 563–571 (2007). https://doi.org/10.1007/s00253-006-0699-5

  21. 21.

    Kıvak, T.: Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement 50, 19–28 (2014)

  22. 22.

    Çiçek, A.; Kıvak, T.; Ekici, E.: Optimization of drilling parameters using Taguchi technique and response surface methodology (RSM) in drilling of AISI 304 steel with cryogenically treated HSS drills. J. Intell. Manuf. 26(2), 295–305 (2015)

  23. 23.

    Kıvak, T.; Samtaş, G.; Çiçek, A.: Taguchi method based optimisation of drilling parameters in drilling of AISI 316 steel with PVD monolayer and multilayer coated HSS drills. Measurement 45(6), 1547–1557 (2012)

  24. 24.

    Noshad, M.; Mohebbi, M.; Shahidi, F.; Mortazavi, S.A.: Multi-objective optimization of osmotic-ultrasonic pretreatments and hot-air drying of quince using response surface methodology. Food Bioprocess. Technol. 5, 2098–2110 (2012). https://doi.org/10.1007/s11947-011-0577-8

  25. 25.

    Seeman, M.; Ganesan, G.; Karthikeyan, R.; Velayudham, A.: Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach. Int. J. Adv. Manuf. Technol. 48, 613–624 (2010). https://doi.org/10.1007/s00170-009-2297-z

  26. 26.

    Sagbas, A.: Analysis and optimization of surface roughness in the ball burnishing process using response surface methodology and desirabilty function. Adv. Eng. Softw. 42, 992–998 (2011). https://doi.org/10.1016/j.advengsoft.2011.05.021

  27. 27.

    El-Axir, M.H.; Othman, O.M.; Abodiena, A.M.: Study on the inner surface finishing of aluminum alloy 2014 by ball burnishing process. J. Mater. Process. Technol. 202, 435–442 (2008). https://doi.org/10.1016/j.jmatprotec.2007.10.040

  28. 28.

    John, M.R.S.; Balaji, B.; Vinayagam, B.K.: Optimisation of internal roller burnishing process in CNC machining center using response surface methodology. J. Braz. Soc. Mech. Sci. Eng. 39, 4045–4057 (2017). https://doi.org/10.1007/s40430-017-0871-0

  29. 29.

    El-Axir, M.H.: Investigation into roller burnishing. Int. J. Mach. Tools Manuf. 40, 1603–1617 (2000). https://doi.org/10.1016/S0890-6955(00)00019-5

  30. 30.

    Nguyen, T.; Le, X.: Optimization of interior roller burnishing process for improving surface quality. Mater. Manuf. Process. 33, 1233–1241 (2018). https://doi.org/10.1080/10426914.2018.1453159

  31. 31.

    Amdouni, H.; Bouzaiene, H.; Montagne, A.; Nasri, M.; Iost, A.: Modeling and optimization of a ball-burnished aluminum alloy flat surface with a crossed strategy based on response surface methodology. Int. J. Adv. Manuf. Technol. 88, 801–814 (2017). https://doi.org/10.1007/s00170-016-8817-8

  32. 32.

    Sachin, B.; Narendranath, S.; Chakradhar, D.: Effect of working parameters on the surface integrity in cryogenic diamond burnishing of 17-4 PH stainless steel with a novel diamond burnishing tool. J. Manuf. Process. 38, 564–571 (2019). https://doi.org/10.1016/j.jmapro.2019.01.051

  33. 33.

    Kansal, H.K.; Singh, S.; Kumar, P.: Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J. Mater. Process. Technol. 169, 427–436 (2005). https://doi.org/10.1016/j.jmatprotec.2005.03.028

  34. 34.

    Hassan, A.M.: The effects of ball- and roller-burnishing on the surface roughness and hardness of some non-ferrous metals. J. Mater. Process. Technol. 72, 385–391 (1997). https://doi.org/10.1016/S0924-0136(97)00199-4

  35. 35.

    Sachin, B.; Narendranath, S.; Chakradhar, D.: Sustainable diamond burnishing of 17-4 PH stainless steel for enhanced surface integrity and product performance by using a novel modified tool. Mater. Res. Express 6(4), 046501 (2019). https://doi.org/10.1088/2053-1591/aaf900

  36. 36.

    Lyons, A.C.; Ne, M.: An investigation of the surface topography of ball burnished mild steel and aluminium. Int. J. Adv. Manuf. Technol. 16, 469–473 (2000). https://doi.org/10.1007/s001700070054

  37. 37.

    El-Taweel, T.A.; El-Axir, M.H.: Analysis and optimization of the ball burnishing process through the Taguchi technique. Int. J. Adv. Manuf. Technol. 41, 301–310 (2009). https://doi.org/10.1007/s00170-008-1485-6

  38. 38.

    Hassan, A.M.; Al-Bsharat, A.S.: Influence of burnishing process on surface roughness, hardness, and microstructure of some non-ferrous metals. Wear 199, 1–8 (1996). https://doi.org/10.1016/0043-1648(95)06847-3

  39. 39.

    Sachin, B.; Narendranath, S.; Chakradhar, D.: Selection of optimal process parameters in sustainable diamond burnishing of 17-4 PH stainless steel. J. Braz. Soc. Mech. Sci. 41, 219 (2019). https://doi.org/10.1007/s40430-019-1726-7

  40. 40.

    Sachin, B.; Narendranath, S.; Chakradhar, D.: Enhancement of surface integrity by cryogenic diamond burnishing toward the improved functional performance of the components. J Braz. Soc. Mech. Sci. Eng. 41, 396 (2019). https://doi.org/10.1007/s40430-019-1918-1

  41. 41.

    Sachin, B.; Narendranath, S.; Chakradhar, D.: Analysis of surface hardness and surface roughness in diamond burnishing of 17-4 PH stainless steel. IOP Conf. Ser. Mater. Sci. Eng. 577(1), 012075 (2019)

  42. 42.

    Rao, C.M.; Rao, S.S.; Herbert, M.A.: An experimental and numerical approach to study the performance of modified perforated cutting tools on machining of Ti–6Al–4V alloy. Arab. J. Sci. Eng. (2019). https://doi.org/10.1007/s13369-019-04268-w

  43. 43.

    Kumar, V.; Kumar, V.; Kumar, K.: An experimental analysis and optimization of machining rate and surface characteristics in WEDM of Monel-400 using RSM and desirability approach. J. Ind. Eng. 11(3), 297–307 (2015). https://doi.org/10.1007/s40092-015-0103-0

  44. 44.

    Ambalal, K.; Pragnesh, P.; Brahmbhatt, K.: Response surface methodology based desirability approach for optimization of roller burnishing process parameter. J. Inst. Eng. Ser. C 99(6), 729–736 (2017). https://doi.org/10.1007/s40032-017-0368-8

Download references

Author information

Correspondence to B. Sachin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sachin, B., Narendranath, S. & Chakradhar, D. Application of Desirability Approach to Optimize the Control Factors in Cryogenic Diamond Burnishing. Arab J Sci Eng 45, 1305–1317 (2020). https://doi.org/10.1007/s13369-019-04326-3

Download citation

Keywords

  • Response surface methodology (RSM)
  • Cryogenic diamond burnishing
  • ANOVA
  • Surface roughness
  • Desirability function approach (DFA)