Advertisement

Experimental Investigations and Prediction of Thermal Behaviour of Ferrosialate-Based Geopolymer Mortars

Abstract

This paper studies the thermal behaviour of ferrosialate geopolymer mortars. This is done by monitoring various factors influencing the strength gain/loss, weight loss, enthalpy changes, physical and chemical transformations in the ferrosialate geopolymer structure using TG/DT analysis. This study proposed a novel predictive equation for estimating this parameter with the help of gene expression programming (GEP). Fly ash is used as a raw feed for sialate geopolymer, and red mud along with fly ash is used for ferrosialate geopolymer. Till 200 °C, oven-cured samples showed maximum strength results. Whereas in later stages, i.e. after exposure to 400 °C, ambient cured samples surpassed the former by 4.14%. Development of broad amorphous hump in the XRD patterns, presence of thicker geopolymer structure in the SEM images for 400 °C samples, an exothermic peak in the DTA curves at 400 °C and increment in the compressive strength up to 400 °C exposure, all pointing to a conclusion that elevated temperature-favoured ferrosialate geopolymer formation till 400 °C. After exposure to 800 °C, maximum strength loss of 68.57% and 30.3% is observed for sialate and ferrosialate samples dehydroxylation, recrystallization, and melting of unreacted particles are the reasons for diminishing the strength at elevated temperatures. An equation using GEP model (r2 = 0.913) having nine genes is proposed that can predict the residual compressive strength of ferrosialate geopolymer mortars. Though this model is for ferrosialate geopolymer, a similar technique can be easily adapted to other types of geopolymers.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Abbreviations

TGA:

Thermogravimetric analysis

DTA:

Differential thermal analysis

A28:

28-day ambient curing

H72:

72-h oven curing

GEP:

Gene expression programming

SEM:

Scanning electron microscope

XRD:

X-ray diffraction

Q:

Quartz

N:

Nepheline

M:

Mullite

H:

Haematite

RM:

Red mud

IS:

Indian standards

Mol.:

Molarity of NaOH solution

References

  1. 1.

    Malhotra, V.M.: Introduction: sustainable development and technology concrete technology. Concr. Int. 24, 2002 (2002)

  2. 2.

    Banik, N.; Koesoemadinata, A.; Wagner, C.; Inyang, C.; Bui, H.: Predrill pore-pressure prediction directly from seismically derived acoustic impedance. In: Society of Exploration Geophysicists International Exposition 83rd Annual Meetting SEG 2013 Expand. Geophys. Front., vol. 35, pp. 2905–2909 (2013). https://doi.org/10.1190/segam2013-0137.1

  3. 3.

    Ng, C.; Alengaram, U.J.; Wong, L.S.; Mo, K.H.; Jumaat, M.Z.; Ramesh, S.: A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Constr. Build. Mater. 186, 550–576 (2018). https://doi.org/10.1016/j.conbuildmat.2018.07.075

  4. 4.

    Revathi, T.; Jeyalakshmi, R.; Rajamane, N.P.: Study on the role of n-SiO2 incorporation in thermo-mechanical and microstructural properties of ambient cured FA-GGBS geopolymer matrix. Appl. Surf. Sci. 449, 322–331 (2018). https://doi.org/10.1016/j.apsusc.2018.01.281

  5. 5.

    Davidovits, J.: Global warming impact on the cement and aggregates industries. World Resour. Rev. 6, 263–278 (1994)

  6. 6.

    Xu, H.; Van Deventer, J.S.J.: The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 59, 247–266 (2000). https://doi.org/10.1016/S0301-7516(99)00074-5

  7. 7.

    Hardjito, D.; Rangan, B.V.: Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete. Curtin University of Technology, Perth (2005)

  8. 8.

    Wan, Q.; Rao, F.; Song, S.; León-Patiño, C.A.: Geothermal clay-based geopolymer binders: synthesis and microstructural characterization. Appl. Clay Sci. 146, 223–229 (2017). https://doi.org/10.1016/j.clay.2017.05.047

  9. 9.

    Yang, T.; Han, E.; Wang, X.; Wu, D.: Surface decoration of polyimide fiber with carbon nanotubes and its application for mechanical enhancement of phosphoric acid-based geopolymers. Appl. Surf. Sci. 416, 200–212 (2017). https://doi.org/10.1016/j.apsusc.2017.04.166

  10. 10.

    Davidovits, M.; Davidovits, F.; Davidovits, R.: Cimento Geopolimero do tipo ferro-sialato. Patent No. WO 2012/056125 Al (2012)

  11. 11.

    Kumar, S.; Kumar, R.: Synergising red (MUD) and grey (ash) for greener geopolymers. In: Bauxite Residue Valorisation and Best Practices. pp. 273–280. Leuven (2004)

  12. 12.

    Klauber, C.; Gräfe, M.: Power G (2011) Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy 108, 11–32 (2011). https://doi.org/10.1016/j.hydromet.2011.02.007

  13. 13.

    Singh, S.; Aswath, M.U.; Ranganath, R.V.: Effect of mechanical activation of red mud on the strength of geopolymer binder. Constr. Build. Mater. 177, 91–101 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.096

  14. 14.

    Brunori, C.; Cremisini, C.; Massanisso, P.; Pinto, V.; Torricelli, L.: Reuse of a treated red mud bauxite waste: studies on environmental compatibility. J. Hazard. Mater. 117, 55–63 (2005). https://doi.org/10.1016/j.jhazmat.2004.09.010

  15. 15.

    Patel, S.; Pal, B.K.: Current status of an industrial waste: red mud an overview. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 4, 1–16 (2015)

  16. 16.

    Hu, Y.; Liang, S.; Yang, J.; Chen, Y.; Ye, N.; Ke, Y.; Tao, S.; Xiao, K.; Hu, J.; Hou, H.; Fan, W.; Zhu, S.; Zhang, Y.; Xiao, B.: Role of Fe species in geopolymer synthesized from alkali-thermal pretreated Fe-rich Bayer red mud. Constr. Build. Mater. 200, 398–407 (2019). https://doi.org/10.1016/j.conbuildmat.2018.12.122

  17. 17.

    Xin, J.; Huang, C.: Fire risk analysis of residential buildings based on scenario clusters and its application in fire risk management. Fire Saf. J. 62, 72–78 (2013). https://doi.org/10.1016/j.firesaf.2013.09.022

  18. 18.

    Zhang, H.Y.; Kodur, V.; Wu, B.; Cao, L.; Wang, F.: Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Constr. Build. Mater. 109, 17–24 (2016). https://doi.org/10.1016/j.conbuildmat.2016.01.043

  19. 19.

    Rashad, A.M.; Zeedan, S.R.: The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Constr. Build. Mater. 25, 3098–3107 (2011). https://doi.org/10.1016/j.conbuildmat.2010.12.044

  20. 20.

    Hosan, A.; Haque, S.; Shaikh, F.: Compressive behaviour of sodium and potassium activators synthetized fly ash geopolymer at elevated temperatures: a comparative study. J. Build. Eng. 8, 123–130 (2016). https://doi.org/10.1016/j.jobe.2016.10.005

  21. 21.

    Bakharev, T.: Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem. Concr. Res. 36, 1134–1147 (2006). https://doi.org/10.1016/j.cemconres.2006.03.022

  22. 22.

    Kong, D.L.Y.; Sanjayan, J.G.: Damage behavior of geopolymer composites exposed to elevated temperatures. Cem. Concr. Compos. 30, 986–991 (2008). https://doi.org/10.1016/j.cemconcomp.2008.08.001

  23. 23.

    Kayadelen, C.; Günaydin, O.; Fener, M.; Demir, A.; Özvan, A.: Modeling of the angle of shearing resistance of soils using soft computing systems. Exp. Syst. Appl. 36, 11814–11826 (2009). https://doi.org/10.1016/j.eswa.2009.04.008

  24. 24.

    Abbas, H.; Al-Salloum, Y.A.; Elsanadedy, H.M.; Almusallam, T.H.: ANN models for prediction of residual strength of HSC after exposure to elevated temperature. Fire Saf. J. 106, 13–28 (2019). https://doi.org/10.1016/j.firesaf.2019.03.011

  25. 25.

    Mousavi, S.M.; Aminian, P.; Gandomi, A.H.; Alavi, A.H.; Bolandi, H.: A new predictive model for compressive strength of HPC using gene expression programming. Adv. Eng. Softw. 45, 105–114 (2012). https://doi.org/10.1016/j.advengsoft.2011.09.014

  26. 26.

    Gandomi, A.H.; Alavi, A.H.: Multi-stage genetic programming: a new strategy to nonlinear system modeling. Inf. Sci. (Ny) 181, 5227–5239 (2011). https://doi.org/10.1016/j.ins.2011.07.026

  27. 27.

    Ferreira, C.: Gene Expression Programming Mathematical Modeling by an Artificial Intelligence, p. 478. Springer, Berlin (2006)

  28. 28.

    Jafari, S.; Mahini, S.S.: Lightweight concrete design using gene expression programing. Constr. Build. Mater. 139, 93–100 (2017). https://doi.org/10.1016/j.conbuildmat.2017.01.120

  29. 29.

    Gholampour, A.; Gandomi, A.H.; Ozbakkaloglu, T.: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming. Constr. Build. Mater. 130, 122–145 (2017). https://doi.org/10.1016/j.conbuildmat.2016.10.114

  30. 30.

    American Concrete Institute The Masonry Society: Aci 216.1-07/Tms-0216-07 (2007)

  31. 31.

    Cen: BS EN 1992-1-2:2004—Eurocode 2 (2004)

  32. 32.

    Kong, D.L.Y.; Sanjayan, J.G.: Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem. Concr. Res. 40, 334–339 (2010). https://doi.org/10.1016/j.cemconres.2009.10.017

  33. 33.

    Nazari, A.; Bagheri, A.; Sanjayan, J.G.; Dao, M.; Mallawa, C.; Zannis, P.; Zumbo, S.: Thermal shock reactions of ordinary Portland cement and geopolymer concrete: microstructural and mechanical investigation. Constr. Build. Mater. 196, 492–498 (2019). https://doi.org/10.1016/j.conbuildmat.2018.11.098

  34. 34.

    IS:650–1991: IS 650: Specification for Standard Sand for Testing of Cement, p. 1991. Bureau of Indian Standards, Delhi (1991)

  35. 35.

    Indian Standard IS : 4031 (Part 6)—1988 (Reaffirmed 2005): Indian Standard IS : 4031 (Part 6)—1988 (Reaffirmed 2005). Methods Phys. Tests Hydroulic Cem. 4031, pp. 1–3 (2005)

  36. 36.

    Nazari, A.; Bagheri, A.; Dao, M.; Mallawa, C.; Zannis, P.; Zumbo, S.; Sanjayan, J.G.: The behaviour of iron in geopolymer under thermal shock. Constr. Build. Mater. 150, 248–251 (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.223

  37. 37.

    Sivasakthi, M.; Jeyalakshmi, R.; Rajamane, N.P.; Jose, R.: Thermal and structural micro analysis of micro silica blended fly ash based geopolymer composites. J. Non Cryst. Solids 499, 117–130 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.07.027

  38. 38.

    Liang, G.; Zhu, H.; Zhang, Z.; Wu, Q.: Effect of rice husk ash addition on the compressive strength and thermal stability of metakaolin based geopolymer. Constr. Build. Mater. 222, 872–881 (2019). https://doi.org/10.1016/j.conbuildmat.2019.06.200

  39. 39.

    Sumajouw, D.M.J.; Hardjito, D.; Wallah, S.E.; Rangan, B.V.: Fly Ash-Based Geopolymer Concrete: Study of Slender Reinforced Columns. Springer, Perth (2007)

  40. 40.

    Choo, H.; Lim, S.; Lee, W.; Lee, C.: Compressive strength of one-part alkali activated fly ash using red mud as alkali supplier. Constr. Build. Mater. 125, 21–28 (2016). https://doi.org/10.1016/j.conbuildmat.2016.08.015

  41. 41.

    Sagoe-Crentsil, K.; Weng, L.: Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems. J. Mater. Sci. 42, 3007–3014 (2007). https://doi.org/10.1007/s10853-006-0818-9

  42. 42.

    Lemougna, P.N.; Wang, K.T.; Tang, Q.; Cui, X.M.: Synthesis and characterization of low temperature (< 800°C) ceramics from red mud geopolymer precursor. Constr. Build. Mater. 131, 564–573 (2017). https://doi.org/10.1016/j.conbuildmat.2016.11.108

  43. 43.

    He, J.; Zhang, J.; Yu, Y.; Zhang, G.: The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: a comparative study. Constr. Build. Mater. 30, 80–91 (2012). https://doi.org/10.1016/j.conbuildmat.2011.12.011

  44. 44.

    Rickard, W.D.A.; Kealley, C.S.; Van Riessen, A.: Thermally induced microstructural changes in fly ash geopolymers: experimental results and proposed model. J. Am. Ceram. Soc. 98, 929–939 (2015). https://doi.org/10.1111/jace.13370

  45. 45.

    Lahoti, M.; Tan, K.H.; Yang, E.H.: A critical review of geopolymer properties for structural fire-resistance applications. Constr. Build. Mater. 221, 514–526 (2019). https://doi.org/10.1016/j.conbuildmat.2019.06.076

  46. 46.

    Fan, F.; Liu, Z.; Xu, G.; Peng, H.; Cai, C.S.: Mechanical and thermal properties of fly ash based geopolymers. Constr. Build. Mater. 160, 66–81 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.023

  47. 47.

    Rickard, W.D.A.; Temuujin, J.; Van Riessen, A.: Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition. J. Non Cryst. Solids 358, 1830–1839 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.05.032

  48. 48.

    Abdulkareem, O.A.; Mustafa Al Bakri, A.M.; Kamarudin, H.; Khairul Nizar, I.; Saif, A.A.: Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Constr. Build. Mater. 50, 377–387 (2014). https://doi.org/10.1016/j.conbuildmat.2013.09.047

  49. 49.

    Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; Van Deventer, J.S.J.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42, 2917–2933 (2007). https://doi.org/10.1007/s10853-006-0637-z

  50. 50.

    Allahverdi, A.; Kani, E.N.; Yazdanipour, M.: Effects of blast-furnace slag on natural pozzolan-based geopolymer cement. Ceram. Silik. 55, 68–78 (2011)

  51. 51.

    Luhar, S.; Chaudhary, S.; Luhar, I.: Thermal resistance of fly ash based rubberized geopolymer concrete. J. Build. Eng. 19, 420–428 (2018). https://doi.org/10.1016/j.jobe.2018.05.025

  52. 52.

    Duxson, P.; Lukey, G.C.; van Deventer, J.S.J.: The thermal evolution of metakaolin geopolymers: part 2—phase stability and structural development. J. Non Cryst. Solids 353, 2186–2200 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.02.050

  53. 53.

    Prud’Homme, E.; Michaud, P.; Joussein, E.; Rossignol, S.: Influence of raw materials and potassium and silicon concentrations on the formation of a zeolite phase in a geopolymer network during thermal treatment. J Non Cryst. Solids 358, 1908–1916 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.05.043

  54. 54.

    Wen, N.; Zhao, Y.; Yu, Z.; Liu, M.: A sludge and modified rice husk ash-based geopolymer: synthesis and characterization analysis. J. Clean. Prod. 226, 805–814 (2019). https://doi.org/10.1016/j.jclepro.2019.04.045

Download references

Acknowledgements

Authors would like to thank School of Bioscience and Engineering, VIT Vellore for giving access to SEM facility. Authors would also like to thank Hindalco, Belgaum for providing red mud.

Author information

Correspondence to S. Karthiyaini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 18 kb)

Supplementary material 2 (XLSX 37 kb)

Appendices

Appendix 1

See Table 6.

Table 6 Functions used in the programming

Appendix 2

See Table 7.

Table 7 Values of constants in expression trees

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yeddula, B.S.R., Karthiyaini, S. Experimental Investigations and Prediction of Thermal Behaviour of Ferrosialate-Based Geopolymer Mortars. Arab J Sci Eng (2020). https://doi.org/10.1007/s13369-019-04314-7

Download citation

Keywords

  • Ferrosialate
  • Prediction
  • Geopolymer
  • Red mud
  • Thermal behaviour
  • TGA