Advertisement

Genetic Variability of the Populations of Phlebotomus papatasi, the Main Vector of Leishmania major, in Al-Madinah Al-Munawarah, Saudi Arabia

  • 52 Accesses

Abstract

Sand flies are vectors of several human pathogens. Phlebotomus papatasi has been confirmed as the vector of Leishmania major, the causative agent of cutaneous leishmaniasis (CL) in Saudi Arabia. This species is the predominant in Al-Madinah which is in agreement with the expansion of CL. In the present study, the random amplified polymorphic DNA–polymerase chain reaction (RAPD-PCR) technique was applied with six primers to evaluate the relationships among the geographic populations of P. papatasi collected from four villages in Al-Madinah: Almondasa, Almaliliah, Abyar Al-Mashy and Agool. The results showed the mean proportion of the polymorphic loci within the populations was (84.89%), while between them it was (94.51%). The average total genetic diversity across the all studied populations was slightly higher (0.35) than the genetic diversity within the populations (0.31). The average of the gene flow between the four populations was rated to have a worth of 4.363. This higher level of gene flow corresponds to less differentiation between the populations, which could result from the limited distances between the sampling areas. The phylogenetic and genetic distance analyses generated from the RAPD-PCR profiles showed close relationships between Almondasa and Almaliliah populations, while the largest genetic distance was detected between the populations of Almondasa and Agool. In conclusion, the genetic variability among and within P. papatasi populations was identified based on the efficient RAPD-PCR technique. The identification of the vector of cutaneous leishmaniasis in Al-Madinah and the differentiation of its populations and individuals is vital to the field of medical entomology.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig.1
Fig. 2
Fig. 3

References

  1. 1.

    Depaquit, J.; Grandadam, M.; Fouque, F.; Andry, P.E.; Peyrefitte, C.: Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: a review. Euro. 15(10), 19507 (2010). https://doi.org/10.2807/ese.15.10.19507-en

  2. 2.

    Mondragon-Shem, K.; Al-Salem, W.S.; Kelly-Hope, L.; Abdeladhim, M.; Al-Zahrani, M.H.; Valenzuela, J.G.; Acosta-Serrano, A.: Severity of old world cutaneous leishmaniasis is influenced by previous exposure to sandfly Bites in Saudi Arabia. PLoS Negl. Trop. Dis. 9(2), e0003449 (2015). https://doi.org/10.1371/journal.pntd.0003449

  3. 3.

    Kenawy, M.A.; Al Ashry, H.A.; Shobrak, M.: Distribution and periodicity of sandflies (Diptera: Phlebotominae) along different altitudes in Asir Region, Southwest of Saudi Arabia. J.E.A.R. 47(2), 56–61 (2015) https://doi.org/10.4081/jear.2015.5016

  4. 4.

    Haouas, N.; Amer, O.; Alshammri, F.F.; Al-Shammari, S.; Remadi, L.; Ashankyty, I.: Cutaneous leishmaniasis in northwestern Saudi Arabia: identification of sand fly fauna and parasites. Parasit. Vectors 10, 544 (2017). https://doi.org/10.1186/s13071-017-2497-6

  5. 5.

    Abuzaid, A.; Abdoon, A.; Aldahan, M.; Alzahrani, A.; Alhakeem, R.; Asiri, A.; Alzahrani, M.; Memish, Z.: Cutaneous Leishmaniasis in Saudi Arabia: a comprehensive overview. Vector-Borne Zoonotic Dis. 17(10), 73–684 (2017). https://doi.org/10.1089/vbz.2017.2119

  6. 6.

    World Health Organization: leishmaniasis. https://www.who.int/mediacentre/factsheets/fs375/en/ (2015). Accessed 22 March 2015.

  7. 7.

    Al-Dakhil, A.A.; Al-Ajmi, R.A.; Siddiqi, N.J.; Ayaad, T.H.: Molecular typing of phlebotomine sand flies in Al-Madinah and Asir regions, Saudi Arabia using PCR-RFLP of 18S ribosomal RNA gene. Saudi J. Biol. Sci. 24(7), 1697–1703 (2017). https://doi.org/10.1016/j.sjbs.2016.01.014

  8. 8.

    El-Badry, A.; Al-Juhani, A.; El-Kheir, I.; Al-Zubainy, S.: Distribution of sand flies in El-Nekheil province, in Al-Madinah Al-Munawwarah region, western of Saudi Arabia. Parasitol. Res. 103, 151 (2008). https://doi.org/10.1007/s00436-008-0942-3

  9. 9.

    World Health Organization: leishmaniasis. https://www.who.int/leishmaniasis/burden/en/ (2017). Accessed 18 Dec 2018.

  10. 10.

    Shalaby, I.; Gherbawy, Y.; Jamjoom, M.; Banaja, A.E.: Genotypic characterization of cutaneous leishmaniasis at Al Baha and Al Qasim Provinces (Saudi Arabia). Vector Borne Zoonotic Dis. 11(7), 807–813 (2011). https://doi.org/10.1089/vbz.2010.0213

  11. 11.

    Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano; Jannin, J.; Boer, M.; The WHO Leishmaniasis Control Team: Leishmaniasis worldwide and global estimates of its incidence. Plos One, 7(5): e35671 (2012) https://doi.org/10.1371/journal.pone.0035671

  12. 12.

    Abdalla, N. M.; Abdelgani, A. M.; Osman, A. A.; Mohamed, M. N.: Clinicoepidemiological study on focus of cutaneous leishmaniasis in Saudi Arabia. Int. J. Curr. Res. 8 (05), 31190–31196 (2016) https://www.journalcra.com

  13. 13.

    Elmekki, M.; Elhassan, M.; Ozbak, H.; Qattan, I.; Saleh, S.; Alharbi, A.: Epidemiological trends of cutaneous Leishmaniasis in Al-Madinah Al-Munawarah Province, Western Region of Saudi Arabia. J. Glob. Infect. Dis. 9,146–50 (2017) https://www.jgid.org/text.asp?2017/9/4/146/220407

  14. 14.

    Ministry of Health, Saudi Arabia. Health Statistical Year Book (2018).

  15. 15.

    Munstermann, L.E.: Phlebotomine sand flies, the Psychodidae. In: Marquardt, W.C.; Black, W.C.; Freier, J.E.; Hagedorn, H.H.; Hemingway, J.; Higgs, S.; James, A.A.; Kondratieff, B.; Moore, C.G. (eds.) Biology of Disease Vectors, 2nd edn. pp. 141–151. Elsevier, San Diego. (2004)

  16. 16.

    Kato, H.; Uezato, H.; Katakura, K.; Calvopiña, M.; Marco, J.D.; Barroso, P.A.; Gomez, E.A.; Mimori, T.; Korenaga, M.; Iwata, H.; Nonaka, S.; Hashiguchi, Y.: Detection and identification of Leishmania species within naturally infected sand flies in the andean areas of Ecuador by a polymerase chain reaction. Am. J. Trop. Med. Hyg. 72, 87–93 (2005). https://doi.org/10.4269/ajtmh.2005.72.87

  17. 17.

    Barroso, P.A.; Marco, J.D.; Kato, H.; Tarama, R.; Rueda, P.; Cajal, S. P.; Basombrı´o, M.A.; Korenaga, M.; Taranto, N.J.; Hashiguchi, Y.: The identification of sand fly species, from an area of Argentina with endemic leishmaniasis, by the PCR-based analysis of the gene coding for 18S ribosomal RNA. Ann. Trop. Med. Parasitol. 101 (3), 247–253 (2007) https://doi.org/10.1179/136485907X156988

  18. 18.

    Kuwahara, K.; Kato, H.; Gomez, E.A.; Uezato, H.; Mimori, T.; Yamamoto, Y.I.; Calvopiña, M.; Cáceres, A.G.; Iwata, H.; Hashiguchi, Y.: Genetic diversity of ribosomal RNA internal transcribed spacer sequences in Lutzomyia species from areas endemic for New World cutaneous leishmaniasis. Acta. Trop. 112, 131–136 (2009). https://doi.org/10.1016/j.actatropica.2009.07.010

  19. 19.

    Hughes, G.L.; Samuels, S.K.; Shaikh, K.; Rasgon, J.L.: Scientific Note Discrimination of the Plasmodium mexicanum vectors Lutzomyia stewarti and Lutzomyia vexator by a PCR-RFLP assay and Wolbachia infection. J. Vector Ecol. 39(1), 224–227 (2014)

  20. 20.

    Al-Ajmi, R.A.; Ayaad, T.H.; Al-Enazi, M.; Al-Qahtani, A.A.: Molecular identification of natural sand fly species populations inferred from ITS2 rRNA gene in Saudi Arabia. J. Environ. Biol. 36, 627–631 (2015)

  21. 21.

    Merchant, A.; Yu, T.; Shi, J.; Zhou, X.: Development of a diagnostic marker for Phlebotomus papatasi to Initiate a potential vector surveillance program in North America. Insects. 9(4), E162 (2018). https://doi.org/10.3390/insects9040162

  22. 22.

    Lynch, M.; Milligan, B.: Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3(2), 91–99 (1994). https://doi.org/10.1111/j.1365-294X.1994.tb00109.x

  23. 23.

    Diakou, A.; Dovas, C.I.: Optimization of random-amplified polymorphic DNA producing amplicons up to 8500 bp and revealing intraspecies polymorphism in Leishmania infantum isolates. Anal. Biochem. 288(2), 195–200 (2001). https://doi.org/10.1006/abio.2000.4896

  24. 24.

    Neto, E.D.; Caballero, O.L.; Vidigal, T.H.; Pena, S.D.; Simpson, A.: Partially degraded DNA of parasitological interest serves as an adequate template for the production of RAPDs. J. Parasitol. 83(4), 753–755 (1997)

  25. 25.

    Behura, S.K.: Molecular marker systems in insects: current trends and future avenues. Mol. Ecol. 15(11), 3087–3113 (2006). https://doi.org/10.1111/j.1365-294X.2006.03014.x

  26. 26.

    Ayres, C.F.; Melo-Santos, M.A.; Sole-Cava, A.M.; Furtado, A.F.: Genetic differentiation of Aedes aegypti (Diptera: Culicidae), the major dengue vector in Brazil. J. Med. Entomol. 40(4), 430–435 (2003)

  27. 27.

    Kim, K.S.; Sappington, T.W.: Genetic structuring of boll weevil populations in the US based on RAPD markers. Insect Mol. Biol. 13(3), 293–303 (2004). https://doi.org/10.1111/j.0962-1075.2004.00487.x

  28. 28.

    Margonari, C.S.; Fortes-Dias, C.L.; Dias, S.: Genetic variability in geographical populations of Lutzomyia whitmani elucidated by RAPD-PCR. J. Med. Entomol. 41(2), 187–192 (2004). https://doi.org/10.1603/0022-2585-41.2.187

  29. 29.

    de Souza, C.M.; Fortes-Dias, C.L.; Linardi, P.M.; Dias, E.S.: Phenetic studies on randomly amplified polymorphic DNA-polymerase chain reaction-variability of four geographical populations of Lutzomyia whitmani (Diptera: Psychodidae) in Brazil. Rev. Soc. Bras. Trop. 37, 148–153 (2004). https://doi.org/10.1590/S0037-86822004000200007

  30. 30.

    Balbino, V.Q.; Coutinho-Abreu, I.V.; Sonoda, I.V.; Melo, M.A.; Andrade, P.P.; Castro, J.A.F.; Rebelo, J.M.M.; Santos, M.S.C.: Genetic structure of natural populations of the sand fly Lutzomyia longipalpis (Diptera: Psychodidae) from the Brazilian northeastern region. Acta. Trop. 98(1), 15–24 (2006). https://doi.org/10.1016/j.actatropica.2006.01.007

  31. 31.

    Dvorak, V.; Votypka, J.; Aytekin, A.M.; Alten, B.; Volf, P.: Intraspecific variability of natural populations of Phlebotomus sergenti, the main vector of Leishmania tropica. J. Vector Ecol. 36, S49–S57 (2011). https://doi.org/10.1111/j.1948-7134.2011.00111.x

  32. 32.

    Hamarsheh, O.; Barghouthi, S.; Al-Jawabreh, A.; Zayed, A.; Azmi, K.; Amro, A.; Abdeen, Z.: Genetic variability of sand fly Phlebotomus papatasi populations (Diptera: Psychodidae) originating from the West Bank, Palestine. J. Entomol. 4(6), 425–434 (2007) https://doi.org/10.3923/je.2007.425.434

  33. 33.

    Seblova, V.; Volfova, V.; Dvorak, V.; Pruzinova, K.; Votypka, J.; Kassahun, A.; Gebre-Michael, T.; Hailu, A.; Warburg, A.; Volf, A.: Phlebotomus orientalis sand flies from two geographically distant ethiopian localities: biology, genetic analyses and susceptibility to Leishmania donovani. PLoS Negl Trop. Dis. 7(4), e2187 (2013). https://doi.org/10.1371/journal.pntd.0002187

  34. 34.

    Elbihari, S.: Reservoirs of zoonotic cutaneous leishmaniasis in Saudi Arabia. Ann. Saudi Med. 8(1), 70 (1988).

  35. 35.

    Rioux, J.A.; Golvan, Y.J.; Croset, H.; Houin, R.; Juminer, B.; Bain, O.; Tour, S.: Ecologie des leishmanioses dans le Sud de France. Echantillonnage. Ethologie. Ann. Parasitol. Hum. Comp. 42, 561–603 (1967)

  36. 36.

    Izri, M.A.; Belazzoug, S.: Phlebotomus (Larroussius) perfiliewi naturally infected with dermotropic Leishmania infantum at Tenes. Algeria. Trans. R. Soc. Trop. Med. Hyg. 87(4), 399 (1993)

  37. 37.

    Smart, J.; Jordan, K.; Whittick, R.J.: Insect of medical importance, fourth ed. British Museum Natural History. Adlen Press Oxford, pp. 286–288 (1965)

  38. 38.

    Büttiker, W.; Lewis, D.J.: Some ecological aspects of Saudi Arabian Phlebotominae sandflies (Diptera: Psychodidae). Fauna Saudi Arabia 5, 479–528 (1983)

  39. 39.

    Lane, R.P.: Recent advance in the systematics of phlebotomine sand flies. Insect Sci. Appl. 7, 225–230 (1986)

  40. 40.

    Young, D.G.; Duncan, M.A.: Guide to the identification and geographic distribution of Lutzomyia sand flies in Mexico, the West Indies, Central and South America (Diptera:Psychodidae), Mem. Am. Entomol. Inst. no. 54. Gainesville, Florida, USA: Associated Publishers, 881 (1994) https://doi.org/10.1016/0035-9203(95)90687-8

  41. 41.

    Parvizi, P.; Benlarbi, M.; Ready, P.D.: Mitochondrial and Wolbachia markers for the sandfly Phlebotomus papatasi: little population differentiation between peridomestic sites and gerbil burrows in Isfahan province. Iran. Med. Vet. Entomol. 17(4), 351–362 (2003). https://doi.org/10.1111/j.1365-2915.2003.00451.x

  42. 42.

    Sambrook, J.; Russell, D. W.: Molecular Cloning. A Laboratory Manual, Vol. 1, 3rd edn. Cold Spring Harbor Laboratory Press, New York (2001)

  43. 43.

    Simpson, E.H.: Measurement of diversity. Nature 163, 688 (1949)

  44. 44.

    Sneath, P.H.A.; Sokal, R.R.: Numerical Taxonomy: The Principles and Practice of Numerical Classification. W. H. Freeman, San Francisco (1973)

  45. 45.

    Hammer, Ø; Harper, D.A.T.; Ryan, P.D.: PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron. 4(1), 9 (2001)

  46. 46.

    Yeh, F.C.; Yang, R.C.; Boyle, T.B.J.; Ye, Z.H.; Mao, J.X.: POPGEN Ver. 1.32. The user friendly software for population genetic analysis. Molecular Biology and Bio-technology Center, University of Alberta, Alberta, Canada (1997)

  47. 47.

    Shannon, C.E.; Weaver, W.: The mathematical theory of communication. University of Illinois Press, Urbana (1949)

  48. 48.

    Nei, M.: Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA. 70, 3321–3323 (1973)

  49. 49.

    Nei, M.: Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3), 583–590 (1978)

  50. 50.

    McDermott, J.M.; McDonald, B.A.: Gene flow in plant pathosystems. Annu. Rev. Phytopathol. 31, 353–373 (1993). https://doi.org/10.1146/annurev.py.31.090193.002033

  51. 51.

    Doha, S.A.; Samy, A.M.: Bionomics of phlebotomine sand flies ( Diptera : Psychodidae) in the province of Al-Baha, Saudi Arabia. Mem. Inst. Oswaldo. Cruz, Rio de Janeiro. 105(7), 850–856 (2010) https://dx.doi.org/10.1590/S0074-02762010000700002

  52. 52.

    Hamarsheh, O.; Presber, W.; Abdeen, Z.; Sawalha, S.; Al-lahem, A.; Schoenian, G.: Isolation and characterization of microsatellite loci in the sand fly Phlebotomus papatasi (Diptera: Psychodidae). Mol. Ecol. Notes. 6, 826–828 (2006). https://doi.org/10.1111/j.1471-8286.2006.01359.x

  53. 53.

    Latrofa, M.S.; Dantas-Torres, F.; Weigl, S.; Tarallo, V.D.; Parisi, A.; Traversa, D.; Otranto, D.: Multilocus molecular and phylogenetic analysis of phlebotomine sand flies (Diptera: Psychodidae) from Southern Italy. Acta Trop. 119, 91–98 (2011). https://doi.org/10.1016/j.actatropica.2011.04.013

  54. 54.

    Depaquit, J.; Lienard, E.; Verzeaux-Griffon, A.; Ferté, H.; Bounamous, A.; Gantier, J.C.; Hanafi, H.A.; Jacobson, R.L.; Maroli, M.; Moin-Vaziri, V.; Müller, F.; Ozbel, Y.; Svobodova, M.; Volf, P.; Léger, N.: Molecular homogeneity in diverse geographical populations of Phlebotomus papatasi (Diptera, Psychodidae) inferred from ND4 mtDNA and ITS2 rDNA epidemiological consequences. Infect. Genet. Evol. 8(2), 159–170 (2008). https://doi.org/10.1016/j.meegid.2007.12.001

  55. 55.

    Slatkin, M.: Gene flow in natural populations. Ann. Rev. Ecol. Syst. 16, 393–430 (1985). https://doi.org/10.1146/annurev.es.16.110185.002141

  56. 56.

    Slatkin, M.; 1987. Gene flow and the geographic structure of natural populations. Science. 236(4803), 787–792. https://www.jstor.org/stable/1699930

  57. 57.

    Freeland, J.R.; Petersen, S.D.; Kirk, H.: Molecular Ecology, 2nd edn. Wiley-Blackwell, Chichester (2011)

  58. 58.

    Killick-Kendrick, R.: Phlebotomine vectors of the leishmaniasis: a review. Med. Vet. Entomol. 4, 1–24 (1990). https://doi.org/10.1111/j.1365-2915.1990.tb00255.x

Download references

Acknowledgements

I would like to thank the Deanship of Scientific Research, Taibah University, for financial support under the research group Number (No: 60321). Hereby, the valuable cooperation of Prof. Karima Fadhlaoui and Dr. Abir Mejri is sincerely appreciated.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Correspondence to Abeer Ali Al-Dakhil.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Dakhil, A.A. Genetic Variability of the Populations of Phlebotomus papatasi, the Main Vector of Leishmania major, in Al-Madinah Al-Munawarah, Saudi Arabia. Arab J Sci Eng (2020). https://doi.org/10.1007/s13369-019-04313-8

Download citation

Keywords

  • Genetic diversity
  • RAPD-PCR
  • Phlebotomus papatasi
  • Leishmania major