New Green Adsorbent for Capturing Carbon Dioxide by Choline Chloride:Urea-Confined Nanoporous Silica

  • Zaitun Ghazali
  • Mohd Ambar Yarmo
  • Nur Hasyareeda Hassan
  • Lee Peng Teh
  • Rizafizah OthamanEmail author
Research Article - Chemistry


Green nanocomposite adsorbent based on nanoporous silica (NS) and deep eutectic solvent (DES) mixture of choline chloride–urea (ChCl:U) was synthesized as an alternative for carbon dioxide (CO2) adsorption. The nanocomposite adsorbent was prepared by sol–gel technique with the variations of ChCl:U (mole ratio 1:2) content in NS at 5–15% (w/w). Fourier transform infrared attenuated total reflectance (ATR-FTIR) results revealed the successful confinement of ChCl:U into NS from the presence of C=O carbonyl stretching, N–H scissoring bending, CH2 bending and C–N stretching peaks. The peaks intensity increased with increasing weight percentage of confined ChCl:U. In contrast, thermogravimetric analysis (TGA) showed decrement of thermal stability of the adsorbent when ChCl:U was confined into NS. The nitrogen physisorption demonstrated a decrease in specific surface areas of the sorbents with increasing ChCl:U weight percentage due to the transformation of micropores to mesopores. The CO2 adsorption capacity was found to be reduced when the weight percentage of ChCl:U was increased. The optimum adsorption capacity of 23.0 mg/g was achieved by 10% ChCl:U/NS sample. The mechanism of the adsorption was deduced from the ATR-FTIR and XPS spectra for 10%CuCl:U/NS showing that physisorption and chemisorption occurred during CO2 adsorption with the presence of carbamate ion.


Deep eutectic solvent Choline chloride–urea Carbon dioxide Adsorption Sol–gel 



The authors would like to acknowledge Universiti Kebangsaan Malaysia (UKM) for funding this project under research Grants of 03-01-02-SF1115 and FRGS/1/2017/STG01/UKM/02/5, Polymer Research Centre (PORCE) for technical support and Centre for Research and Instrumentation Management (CRIM) for the instrument facilities.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.


  1. 1.
    Morreale, B.; Shi, F.: Novel materials for carbon dioxide mitigation technology. Elsevier (2015)Google Scholar
  2. 2.
    Mello, M.R.; Phanon, D.; Silveira, G.Q.; Llewellyn, P.L.; Ronconi, C.M.: Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous Mesoporous Mater. 143, 174–179 (2011)CrossRefGoogle Scholar
  3. 3.
    Hong, S.-M.; Jang, E.; Dysart, A.D.; Pol, V.G.; Lee, K.B.: CO2 capture in the sustainable wheat-derived activated microporous carbon compartments. Sci. Rep. 6, 34590 (2016)CrossRefGoogle Scholar
  4. 4.
    Garcia, G.; Aparicio, S.; Ullah, R.; Atilhan, M.: Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels 29, 2616–2644 (2015)CrossRefGoogle Scholar
  5. 5.
    Hanamertani, A.S.; Pilus, R.M.; Manan, N.A.; Ahmed, S.; Awang, M.: Ionic liquid application in surfactant foam stabilization for gas mobility control. Energy Fuels 32, 6545–6556 (2018)CrossRefGoogle Scholar
  6. 6.
    Tenhunen, T.-M.; Lewandowska, A.E.; Orelma, H.; Johansson, L.-S.; Virtanen, T.; Harlin, A.; Österberg, M.; Eichhorn, S.J.; Tammelin, T.: Understanding the interactions of cellulose fibres and deep eutectic solvent of choline chloride and urea. Cellulose 25, 137–150 (2018)CrossRefGoogle Scholar
  7. 7.
    Liu, P.; Hao, J.-W.; Mo, L.-P.; Zhang, Z.-H.: Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Adv. 5, 48675–48704 (2015)CrossRefGoogle Scholar
  8. 8.
    Leron, R.B.; Caparanga, A.; Li, M.-H.: Carbon dioxide solubility in a deep eutectic solvent based on choline chloride and urea at T = 303.15–343.15 K and moderate pressures. J. Taiwan Inst. Chem. Eng. 44, 879–885 (2013)CrossRefGoogle Scholar
  9. 9.
    Leron, R.B.; Li, M.-H.: Solubility of carbon dioxide in a choline chloride–ethylene glycol based deep eutectic solvent. Thermochim. Acta 551, 14–19 (2013)CrossRefGoogle Scholar
  10. 10.
    Li, X.; Hou, M.; Han, B.; Wang, X.; Zou, L.: Solubility of CO2 in a choline chloride + urea eutectic mixture. J. Chem. Eng. Data 53, 548–550 (2008)CrossRefGoogle Scholar
  11. 11.
    Serrano, M.C.; Gutiérrez, M.C.; Jiménez, R.; Ferrer, M.L.; del Monte, F.: Synthesis of novel lidocaine-releasing poly (diol-co-citrate) elastomers by using deep eutectic solvents. Chem. Commun. 48, 579–581 (2012)CrossRefGoogle Scholar
  12. 12.
    Abbott, A.P.; Capper, G.; Davies, D.L.; Munro, H.L.; Rasheed, R.K.; Tambyrajah, V.: Preparation of novel, moisture-stable, lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem. Commun. 2010–2011 (2001)Google Scholar
  13. 13.
    Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C.: Natural deep eutectic solvents–solvents for the 21st century. ACS Sustain. Chem. Eng. 2, 1063–1071 (2014)CrossRefGoogle Scholar
  14. 14.
    Zhang, Y.; Ji, X.; Lu, X.: Choline-Based deep eutectic solvents for mitigating carbon dioxide Emissions, Novel Materials for Carbon Dioxide Mitigation Technology, Elsevier B.V. 87–116 (2015)Google Scholar
  15. 15.
    Ashworth, C.R.; Matthews, R.P.; Welton, T.; Hunt, P.A.: Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent. Phys. Chem. Chem. Phys. 8(27), 18145–18160 (2016)CrossRefGoogle Scholar
  16. 16.
    Migliorati, V.; Sessa, F.; D’Angelo, P.: Deep eutectic solvents: a structural point of view on the role of the cation. Chem. Phys. Lett. X 2, 100001 (2018)Google Scholar
  17. 17.
    Perkins, S.L.; Painter, P.; Colina, C.M.: Experimental and computational studies of choline chloride-based deep eutectic solvents. J. Chem. Eng. Data 59(11), 3652–3662 (2014)CrossRefGoogle Scholar
  18. 18.
    Sarmad, S.; Xie, Y.; Mikkola, J.-P.; Ji, X.: Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity. New J. Chem. 41, 290–301 (2017)CrossRefGoogle Scholar
  19. 19.
    Daniel-David, D.; Guerton, F.; Dicharry, C.; Torré, J.-P.; Broseta, D.: Hydrate growth at the interface between water and pure or mixed CO2/CH4 gases: influence of pressure, temperature, gas composition and water-soluble surfactants. Chem. Eng. Sci. 132, 118–127 (2015)CrossRefGoogle Scholar
  20. 20.
    Leron, R.B.; Li, M.-H.: Solubility of carbon dioxide in a eutectic mixture of choline chloride and glycerol at moderate pressures. J. Chem. Thermodyn. 57, 131–136 (2013)CrossRefGoogle Scholar
  21. 21.
    Ma, C.; Sarmad, S.; Mikkola, J.P.; Ji, X.: Development of low-cost deep eutectic solvents for CO2 capture. Energy Procedia 142, 3320–3325 (2017)CrossRefGoogle Scholar
  22. 22.
    Trivedi, T.J.; Lee, J.H.; Lee, H.J.; Jeong, Y.K.; Choi, J.W.: Deep eutectic solvents as attractive media for CO2 capture. Green Chem. 18, 2834–2842 (2016)CrossRefGoogle Scholar
  23. 23.
    Bhattacharyya, S.; Filippov, A.; Shah, F.U.: High CO2 absorption capacity by chemisorption at cations and anions in choline-based ionic liquids. Phys. Chem. Chem. Phys. 19, 31216–31226 (2017)CrossRefGoogle Scholar
  24. 24.
    Ruckart, K.N.; O’Brien, R.A.; Woodard, S.M.; West, K.N.; Glover, T.G.: Porous solids impregnated with task-specific ionic liquids as composite sorbents. J. Phys. Chem. C 119, 20681–20697 (2015)CrossRefGoogle Scholar
  25. 25.
    Du, Y.; Du, Z.; Zou, W.; Li, H.; Mi, J.; Zhang, C.: Carbon dioxide adsorbent based on rich amines loaded nano-silica. J. Colloid Interface Sci. 409, 123–128 (2013)CrossRefGoogle Scholar
  26. 26.
    Abdullah, N.A.; Tahiruddin, N.S.M.; Othaman, R.: Effects of silica content on the formation and morphology of ENR/PVC/Silica composites beads. In: AIP Conference Proceedings, p. 40005. AIP Publishing (2017)Google Scholar
  27. 27.
    Jon, N.; Abdullah, I.; Othaman, R.: Effects of silica on the formation of epoxidised natural rubber/polyvinyl chloride membrane. Sains Malaysiana 42, 469–473 (2013)Google Scholar
  28. 28.
    Nor, F.M.; Karim, N.H.A.; Abdullah, I.; Othaman, R.: Permeability of carbon dioxide and nitrogen gases through SiO2 and MgO incorporated ENR/PVC membranes. J. Elastomers Plast. 48, 483–498 (2016)CrossRefGoogle Scholar
  29. 29.
    Jon, N.; Samad, N.A.; Abdullah, N.A.; Abdullah, I.; Othaman, R.: Influence of silica addition on the properties of epoxidised natural rubber/polyvinyl chloride composite membrane. J. Appl. Polym. Sci. 129, 2789–2795 (2013)CrossRefGoogle Scholar
  30. 30.
    Mohamed, M.: Effect of molecular weight on the properties of liquid epoxidised natural rubber acrylate (LENRA)/silica hybrid composites. Sains Malaysiana 40, 743–748 (2011)Google Scholar
  31. 31.
    Zulfiqar, U.; Subhani, T.; Husain, S.W.: Synthesis of silica nanoparticles from sodium silicate under alkaline conditions. J. Sol–Gel. Sci. Technol. 77, 753–758 (2016)CrossRefGoogle Scholar
  32. 32.
    Yu, B.; Cong, H.; Zhao, X.S.; Chen, Z.: Carbon dioxide capture by dendrimer-modified silica nanoparticles. Adsorpt. Sci. Technol. 29, 781–788 (2011)CrossRefGoogle Scholar
  33. 33.
    Jiao, J.; Cao, J.; Xia, Y.; Zhao, L.: Improvement of adsorbent materials for CO2 capture by amine functionalized mesoporous silica with worm-hole framework structure. Chem. Eng. J. 306, 9–16 (2016)CrossRefGoogle Scholar
  34. 34.
    Ren, J.; Li, Z.; Chen, Y.; Yang, Z.; Lu, X.: Supported ionic liquid sorbents for CO2 capture from simulated flue-gas. Chin. J. Chem. Eng. 26, 2377–2384 (2018)CrossRefGoogle Scholar
  35. 35.
    Zulkurnai, N.Z.; Ali, U.F.M.; Ibrahim, N.; Manan, N.S.A.: Carbon dioxide (CO2) adsorption by activated carbon functionalized with deep eutectic solvent (DES). In: IOP Conference Series: Materials Science and Engineering, p. 12001. IOP Publishing (2017)Google Scholar
  36. 36.
    Creamer, A.E.; Gao, B.: Carbon Dioxide Capture: an Effective Way to Combat Global Warming. Springer (2015)Google Scholar
  37. 37.
    Shi, F.; Zhang, Q.; Li, D.; Deng, Y.: Silica-gel-confined ionic liquids: a new attempt for the development of supported nanoliquid catalysis. Chem. Eur. J. 11, 5279–5288 (2005)CrossRefGoogle Scholar
  38. 38.
    Zhou, Y.; Schattka, J.H.; Antonietti, M.: Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol–gel nanocasting technique. Nano Lett. 4, 477–481 (2004)CrossRefGoogle Scholar
  39. 39.
    Marwani, H.M.; Alsafrani, A.E.: New solid phase extractor based on ionic liquid functionalized silica gel surface for selective separation and determination of lanthanum. J. Anal. Sci. Technol. 4, 1–13 (2013)CrossRefGoogle Scholar
  40. 40.
    Vafaeezadeh, M.; Fattahi, A.: Interaction of ionic liquids with the surface of silica gel using nanocluster approach: a combined density functional theory and experimental study. J. Phys. Org. Chem. 27, 163–167 (2014)CrossRefGoogle Scholar
  41. 41.
    Haider, M.B.; Jha, D.; Marriyappan Sivagnanam, B.; Kumar, R.: Thermodynamic and kinetic studies of CO2 capture by glycol and amine-based deep eutectic solvents. J. Chem. Eng. Data 68, 2671–2680 (2018)CrossRefGoogle Scholar
  42. 42.
    Hayyan, M.; Abo-Hamad, A.; AlSaadi, M.A.; Hashim, M.A.: Functionalization of graphene using deep eutectic solvents. Nanoscale Res. Lett. 10, 324 (2015)CrossRefGoogle Scholar
  43. 43.
    Tang, B.; Park, H.E.; Row, K.H.: Preparation of chlorocholine chloride/urea deep eutectic solvent-modified silica and an examination of the ion exchange properties of modified silica as a Lewis adduct. Anal. Bioanal. Chem. 406, 4309–4313 (2014)CrossRefGoogle Scholar
  44. 44.
    Schaber, P.M.; Colson, J.; Higgins, S.; Thielen, D.; Anspach, B.; Brauer, J.: Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta 424, 131–142 (2004)CrossRefGoogle Scholar
  45. 45.
    Chemat, F.; Anjum, H.; Shariff, A.M.; Kumar, P.; Murugesan, T.: Thermal and physical properties of (choline chloride + urea + l-arginine) deep eutectic solvents. J. Mol. Liq. 218, 301–308 (2016)CrossRefGoogle Scholar
  46. 46.
    Hammond, O.S.; Bowron, D.T.; Edler, K.J.: Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling. Green Chem. 18, 2736–2744 (2016)CrossRefGoogle Scholar
  47. 47.
    Fredlake, C.P.; Crosthwaite, J.M.; Hert, D.G.; Aki, S.N.V.K.; Brennecke, J.F.: Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 49, 954–964 (2004)CrossRefGoogle Scholar
  48. 48.
    Kanakubo, M.; Hiejima, Y.; Minami, K.; Aizawa, T.; Nanjo, H.: Melting point depression of ionic liquids confined in nanospaces. Chem. Commun. 1828–1830 (2006)Google Scholar
  49. 49.
    López, T.; Álvarez, M.; Ramírez, P.; Jardón, G.; López, M.; Rodriguez, G.; Ortiz, I.; Novaro, O.: Sol–gel silica matrix as reservoir for controlled release of paracetamol: characterization and kinetic analysis. J. Encapsul. Adsorpt. Sci. 6, 47 (2016)CrossRefGoogle Scholar
  50. 50.
    Webb, P.A.; Orr, C.: Analytical methods in fine particles technology. ed. Micromeritics, USA. 17 (1997)Google Scholar
  51. 51.
    Zhang, J.; Ma, Y.; Shi, F.; Liu, L.; Deng, Y.: Room temperature ionic liquids as templates in the synthesis of mesoporous silica via a sol–gel method. Microporous Mesoporous Mater. 119, 97–103 (2009)CrossRefGoogle Scholar
  52. 52.
    Roque-Malherbe, R.; Polanco-Estrella, R.; Marquez-Linares, F.: Study of the interaction between silica surfaces and the carbon dioxide molecule. J. Phys. Chem. C 114, 17773–17787 (2010)CrossRefGoogle Scholar
  53. 53.
    Bacsik, Z.; Ahlsten, N.; Ziadi, A.; Zhao, G.; Garcia-Bennett, A.E.; Martín-Matute, B.; Hedin, N.: Mechanisms and kinetics for sorption of CO2 on bicontinuous mesoporous silica modified with n-propylamine. Langmuir 27, 11118–11128 (2011)CrossRefGoogle Scholar
  54. 54.
    Kauffman, K.L.; Culp, J.T.; Goodman, A.; Matranga, C.: FT-IR study of CO2 adsorption in a dynamic copper (II) benzoate–pyrazine host with CO2–CO2 interactions in the adsorbed state. J. Phys. Chem. C 115, 1857–1866 (2011)CrossRefGoogle Scholar
  55. 55.
    McCann, N.; Phan, D.; Wang, X.; Conway, W.; Burns, R.; Attalla, M.; Puxty, G.; Maeder, M.: Kinetics and mechanism of carbamate formation from CO2(aq), carbonate species, and monoethanolamine in aqueous solution. J. Phys. Chem. A 113, 5022–5029 (2009)CrossRefGoogle Scholar
  56. 56.
    Aresta, M.; Dibenedetto, A.; Quaranta, E.: Reaction Mechanisms in Carbon Dioxide Conversion. Springer, Berlin, Heidelberg (2016)CrossRefGoogle Scholar
  57. 57.
    Hahn, M.W.; Jelic, J.; Berger, E.; Reuter, K.; Jentys, A.; Lercher, J.A.: Role of amine functionality for CO2 chemisorption on silica. J. Phys. Chem. B 120, 1988–1995 (2016)CrossRefGoogle Scholar
  58. 58.
    Robinson, K.; McCluskey, A.; Attalla, M.I.: An ATR-FTIR study on the effect of molecular structural variations on the CO2 absorption characteristics of heterocyclic amines, part II. ChemPhysChem. 13, 2331–2341 (2012)CrossRefGoogle Scholar
  59. 59.
    Tahari, M.N.A.; Hakim, A.; Hisham, M.W.M.; Yarmo, M.A.: Modification of porous materials by saturated fatty amine as CO2 capturer. Int. J. Chem. Eng. Appl. 6, 395 (2015)Google Scholar
  60. 60.
    Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D.: Handbook of X-ray photoelectron spectroscopy, edited by J. Chastain (Perkin-Elmer, Eden Prairie, MN, 1992). 118 (1992)Google Scholar
  61. 61.
    Benítez, J.J.; San-Miguel, M.A.; Domínguez-Meister, S.; Heredia-Guerrero, J.A.; Salmeron, M.: Structure and chemical state of octadecylamine self-assembled monolayers on mica. J. Phys. Chem. C 115, 19716–19723 (2011)CrossRefGoogle Scholar
  62. 62.
    Khader, M.M.; Al-Marri, M.J.; Ali, S.; Qi, G.; Giannelis, E.P.: Adsorption of CO2 on polyethyleneimine 10 k—mesoporous silica sorbent: XPS and TGA studies. Am. J. Anal. Chem. 6, 274 (2015)CrossRefGoogle Scholar
  63. 63.
    Zelenak, V.; Halamova, D.; Gaberova, L.; Bloch, E.; Llewellyn, P.: Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: effect of amine basicity on sorption properties. Microporous Mesoporous Mater. 116, 358–364 (2008)CrossRefGoogle Scholar
  64. 64.
    Dutcher, B.; Fan, M.; Russell, A.G.: Amine-based CO2 capture technology development from the beginning of 2013—a review. ACS Appl. Mater. Interfaces 7, 2137–2148 (2015)CrossRefGoogle Scholar
  65. 65.
    Tahari, M.N.A.; Yarmo, M.A.: Adsorption of CO2 on silica dioxide catalyst impregnated with various alkylamine. In: AIP Conference Proceedings, pp. 334–341. AIP (2014)Google Scholar
  66. 66.
    Li, W.; Zhang, Z.; Han, B.; Hu, S.; Song, J.; Xie, Y.; Zhou, X.: Switching the basicity of ionic liquids by CO2. Green Chem. 10, 1142–1145 (2008)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2020

Authors and Affiliations

  1. 1.Polymer Research Center, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Catalysis Research Group, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations