Advertisement

Quantum Chemical Study on the Reaction Mechanism of NO Removal by Urea Combined with Hydrogen Peroxide

  • Zhengcheng WenEmail author
  • Xuefeng Huang
  • Hongzhe Shen
  • Ning Ding
  • Yuan Li
  • Jiangrong Xu
Research Article - -Chemical Engineering
  • 9 Downloads

Abstract

Using urea-H2O2 solution to remove NO by scrubbing is regarded as a relatively low-cost and promising denitrification method. For a good understanding and further improvement, the mechanism investigation on the NO removal by urea combined with H2O2 is essential. The denitrification mechanism is calculated and studied in detail by Quantum Chemistry in this paper. Results show that the most possible denitrification route is that oxidizing NO by H2O2 to produce HNO2 and then absorbing HNO2 by urea to produce N2, CO2 and H2O. The activation energy of NO oxidation by H2O2 (71.12 kJ/mol) is higher than that of HNO2 absorption by urea (60.17 kJ/mol). This indicates reaction H2O2 + 2NO → 2HNO2 is the rate-determining step and more difficult to carry out. The constraints of the NO removal are coming from NO oxidation rather than absorption in solution. Improving NO oxidation rate is the key to denitrification. The theoretical results in this paper provide theoretical basis and data reference for subsequent technological development.

Keywords

Nitrogen oxide Urea Quantum chemistry Hydrogen peroxide B3LYP 

Notes

Acknowledgements

This research was supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19E060002) and National Natural Science Foundation of China (Grant No. 11574067).

References

  1. 1.
    Amoatey, P.; Omidvarborna, H.; Baawain, M.S.; Al-Mamun, A.: Emissions and exposure assessments of SOx, NOx, PM10/2.5 and trace metals from oil industries: a review study (2000–2018). Process Saf. Environ. 123, 215–228 (2019)CrossRefGoogle Scholar
  2. 2.
    Ding, L.; Liu, C.; Chen, K.; Huang, Y.; Diao, B.: Atmospheric pollution reduction effect and regional predicament: an empirical analysis based on the Chinese provincial NOx emissions. J. Environ. Manag. 196, 178–187 (2017)CrossRefGoogle Scholar
  3. 3.
    France, L.J.; Yang, Q.; Li, W.; Chen, Z.; Guang, J.; Guo, D.; Wang, L.; Li, X.: Ceria modified FeMnOx-Enhanced performance and sulphur resistance for low-temperature SCR of NOx. Appl. Catal. B Environ. 206(5), 203–215 (2017)CrossRefGoogle Scholar
  4. 4.
    Tan, L.; Guo, Y.; Liu, Z.; Feng, P.; Li, Z.: An investigation on the catalytic characteristic of NOx reduction in SCR systems. J. Taiwan. Inst. Chem. E. 99, 53–59 (2019)CrossRefGoogle Scholar
  5. 5.
    Zhang, L.; Tianyu, D.; Hongxia, Q.; Chi, B.; Zhong, Q.: Synthesis of Fe-ZSM-5@Ce/mesoporous-silica and its enhanced activity by sequential reaction process for NH3-SCR. Chem. Eng. J. 313(1), 702–710 (2017)CrossRefGoogle Scholar
  6. 6.
    Cheng, X.; Bi, X.T.: A review of recent advances in selective catalytic NOx reductionreactor technologies. Particuology 16, 1–18 (2014)CrossRefGoogle Scholar
  7. 7.
    Liu, G.; Bao, W.; Zhang, W.; Shen, D.; Luo, K.H.: An intelligent control of NH3 injection for optimizing the NOx/NH3 ratio in SCR system. J. Energy Inst. Available online 23 October 2018.  https://doi.org/10.1016/j.joei.2018.10.008.CrossRefGoogle Scholar
  8. 8.
    Maria, P.R.; Antonio, G.; Isabella, N.: FTIR in situ mechanistic study of the NH3-NO/NO2 “Fast SCR” reaction over a commercial Fe-ZSM-5 catalyst. Catal. Today 184, 107–114 (2012)CrossRefGoogle Scholar
  9. 9.
    Gao, C.; Shi, J.-W.; Fan, Z.; Wang, B.; Niu, C.: “Fast SCR” reaction over Sm-modified MnOx-TiO2 for promoting reduction of NOx with NH3. Appl. Catal. A Gen. 564, 102–112 (2018)CrossRefGoogle Scholar
  10. 10.
    Bendrich, M.; Scheuer, A.; Hayes, R.E.; Votsmeier, M.: Unified mechanistic model for Standard SCR, Fast SCR, and NO2 SCR over a copper chabazite catalyst. Appl. Catal. B Environ. 222, 76–87 (2018)CrossRefGoogle Scholar
  11. 11.
    Salazar, M.; Hoffmann, S.; Singer, V.; Becker, R.; Grünert, W.: Hybrid catalysts for the selective catalytic reduction (SCR) of NO by NH3. On the role of fast SCR in the reaction network. Appl. Catal. B Environ. 199, 433–438 (2016)CrossRefGoogle Scholar
  12. 12.
    Hongyin, X.; Yuanquan, X.; Jichao, Z.; Zhanfei, S.: Experimental research of affects of the additives on the removal of NOx from flue gas by aqueous urea solution. Proc. CSEE 31(23), 41–46 (2011)Google Scholar
  13. 13.
    Yajing, L.; Yuanquan, X.; Ming, G.: Experimental investigation on removal of SO2 and NOx from flue gas by aqueous solutions of urea triethanolamine. Proc. CSEE 28(5), 44–50 (2008)Google Scholar
  14. 14.
    Jin, D.-S.; Park, B.-R.; Chao, H.-D.: Effect of ClO2 feeding rate on simultaneous reaction of SO2 & NOx removal by ClO2. Theor. Appl. Chem. Eng. 10(2), 1727–1730 (2004)Google Scholar
  15. 15.
    Wei, J.; Luo, Y.; Ping, Yu; Cai, B.; Tan, H.: Removal of NO from flue gas by wet scrubbing with NaClO2/(NH2)2CO solutions. J. Ind. Eng. Chem. 15(1), 16–22 (2009)CrossRefGoogle Scholar
  16. 16.
    Fang, P.; Cen, C.; Tang, Z.; Zhong, P.; Chen, Z.: Simultaneous removal of SO2 and NOx by wet scrubbing using urea solution. Chem. Eng. J. 168(1), 52–59 (2011)CrossRefGoogle Scholar
  17. 17.
    Myers, E.B.; Overcamp, T.J.: Hydrogen peroxide scrubber for the control of nitrogen –oxides. Environ. Eng. Sci. 19, 321–327 (2002)CrossRefGoogle Scholar
  18. 18.
    Chu, H.; Chien, T.W.; Li, S.Y.: Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOH solutions. Sci. Total Environ. 275, 127–135 (2001)CrossRefGoogle Scholar
  19. 19.
    Fang, P.; Cen, C.-p.; Wang, X.-M.; Tang, Z.-J.; Chen, D.-S.: Simultaneous removal of SO2, NO and Hg0 by wet scrubbing using urea + KMnO4 solution. Fuel Process. Technol. 106, 645–653 (2013)CrossRefGoogle Scholar
  20. 20.
    Kang, X.; Ma, X.; Yin, J.; Gao, X.: A study on simultaneous removal of NO and SO2 by using sodium persulfate aqueous scrubbing. Chin. J. Chem. Eng. 26(7), 1536–1544 (2018)CrossRefGoogle Scholar
  21. 21.
    Jin, D.-S.; Deshwal, B.-R.; Park, Y.-S.; Lee, H.-K.: Simultaneous removal of SO2 and NO by wet scrubbing using aqueous chlorine dioxide solution. J. Hazard. Mater. 135(1–3), 412–417 (2006)CrossRefGoogle Scholar
  22. 22.
    Deshwal, B.R.; Lee, S.H.; Jung, J.H.; Shon, B.H.; Lee, H.K.: Study on the removal of NOx from simulated flue gas using acidic NaClO2 solution. J. Environ. Sci. China 20(1), 33–38 (2008)CrossRefGoogle Scholar
  23. 23.
    Zhao, Y.; Guo, T.-X.; Chen, Z.-Y.; Ya-Rong, D.: Simultaneous removal of SO2 and NO using M/NaClO2 complex absorbent. Chem. Eng. J. 160(1), 42–47 (2010)CrossRefGoogle Scholar
  24. 24.
    Wen, Z.; Shen, H.; Li, Y.; Wang, Z.; Wang, G.; Cen, K.: Experimental study on the NOx removal by scrubbing with urea-H2O2 solution after NO partial pre-oxidation. Energy Fuel 33, 6600–6605 (2019)CrossRefGoogle Scholar
  25. 25.
    Yuan, R.M.; Fu, G.; Xu, X.; Wan, H.L.: Bronsted-NH4 + mechanism versus nitrite mechanism: new insight into the selective catalytic reduction of NO by NH3. Phys. Chem. Chem. Phys. 13(2), 453–460 (2011)CrossRefGoogle Scholar
  26. 26.
    Negreira, A.S.; Wilcox, J.: Elementary steps of the catalytic NOx reduction DFT study of Hg oxidation across Vanadia-Titania SCR catalyst under flue gas conditions. J. Phys. Chem. C 117(4), 1761–1772 (2013)CrossRefGoogle Scholar
  27. 27.
    Lee, C.; Yang, W.; Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988)CrossRefGoogle Scholar
  28. 28.
    Becke, A.D.: Density functional thermochemistry III. The role of exact exchange correlation functions. J. Chem. Phys. 98(7), 5648–5652 (1993)CrossRefGoogle Scholar
  29. 29.
    Foresman, J.B.; Frisch, A.: Exploring Chemistry with Electronic Structure Method. Gaussian, Inc., Pittsburgh (2002)Google Scholar
  30. 30.
    Gonzalez, C.; Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90(4), 2154–2159 (1989)CrossRefGoogle Scholar
  31. 31.
    Gauss, J.; Cremer, C.: Analytical evaluation of energy gradients in quadratic configuration interaction theory. Chem. Phys. Lett. 150(3–4), 280–286 (1988)CrossRefGoogle Scholar
  32. 32.
    Salter, E.A.; Trucks, G.W.; Bartlett, R.J.: Analytic energy derivatives in many—body methods: first derivatives. J. Chem. Phys. 90(3), 1752–1766 (1989)CrossRefGoogle Scholar
  33. 33.
    Frisch, M.J.; Trucks, G.W.; Pople, J.A.; et al.: Gaussian 16. Gaussian Inc, Pittsburgh (2016)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  • Zhengcheng Wen
    • 1
    Email author
  • Xuefeng Huang
    • 1
  • Hongzhe Shen
    • 1
  • Ning Ding
    • 1
  • Yuan Li
    • 1
  • Jiangrong Xu
    • 1
  1. 1.College of ScienceHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations