Very High Step-Up Converter with Switched Capacitor and Coupled Inductor

  • Korhan CengizEmail author
Research Article-Electrical Engineering


To increase the voltage gain of power electronic circuits, numerous converters have been designed by researchers. In particular, step-up converters are used in various circuits and systems due to their reliability. Mostly, in some studies, researchers proposed to use coupled inductors and switched capacitors. Therefore, in this study, we aim to use new-generation E-HEMT switches by using a hybrid topology which includes both a switched capacitor and a coupled inductor to deliver ultra-high voltage to the output. The proposed switched capacitor-based hybrid converter (SCBHC) is modeled in Simulink and PowerSim to verify the analytical voltage gain derivations. The proposed SCBHC is compared with a traditional boost converter, a switched capacitor-based topology and two different coupled inductor-based schemes in terms of gain performance for different duty cycles, switching frequencies and turn ratios. With this combined design, we obtain approximately 300–400% more voltage gain than a traditional boost converter. The proposed SCBHC provides a considerable gain and a wide output voltage range with lower turn ratios compared with other topologies.


DC–DC power converters Power conversion Power semiconductor devices Power transistors pulse width modulation converters 


  1. 1.
    Tofoli, F.L.; Pereira, D.C.; Paula, W.J.; Oliviera Junior, D.S.: Survey on non-isolated high-voltage step-up dc-dc topologies based on the boost converter. IET Power Electron. 8(10), 2044–2057 (2015)CrossRefGoogle Scholar
  2. 2.
    Li, W.; He, X.: Review of nonisolated high-step-up dc/dc converters in photovoltaic grid-connected applications. IEEE Trans. Ind. Electron. 58(4), 1239–1250 (2011)CrossRefGoogle Scholar
  3. 3.
    Alexrod, B.; Berkovich, Y.; Ioinovici, A.: A cascade boost-capacitor-switched-converter two level inverter with an optimized multilevel output waveform. IEEE Trans. Circuits Syst. 52(12), 2763–2770 (2005)CrossRefGoogle Scholar
  4. 4.
    Abutbul, O.; Gherlitz, A.; Berkovich, Y.; Ioinovici, A.: Step-up switching-mode converter with high voltage gain using a switched capacitor circuit. IEEE Trans. Circuits Syst. 50(8), 1098–1102 (2003)CrossRefGoogle Scholar
  5. 5.
    Alexrod, B.; Berkovich, Y.; Ioinovici, A.: Transformerless dc-dc converters with a very high dc line-to-load voltage ratio. In: Proceedings of the International Symposium on Circuits and Systems, pp. III-433-III-438 (2003)Google Scholar
  6. 6.
    Li, K.; Hu, Y.; Ioinovici, A.: Generation of the large dc gain step-up non-isolated converters in conjunction with renewable energy sources starting from a proposed geometric structure. IEEE Trans. Power Electron. 32(7), 5323–5340 (2017)CrossRefGoogle Scholar
  7. 7.
    Chen, M.; Li, K.; Hu, J.; Ioinovici, A.: Generation of a family of very high dc gain power electronics circuits based on switched-capacitor-inductor cells starting from a simple graph. IEEE Trans. Circuits Syst. 63(12), 2381–2392 (2016)CrossRefGoogle Scholar
  8. 8.
    Cheung, C.; Tan, S.; Tse, C.K.; Ioinovici, A.: On energy efficiency of switched-capacitor converters. IEEE Trans. Power Electron. 28, 2 (2013)CrossRefGoogle Scholar
  9. 9.
    Liang, T.; Chen, S.; Yang, L.; Chen, J.; Ioinovici, A.: Ultra-large gain step-up switched-capacitor dc-dc converter with coupled inductor for alternative sources of energy. IEEE Trans. Circuits Syst. 59(4), 864–874 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Tan, S.; et al.: Variable structure modeling and design of switched-capacitor converters. IEEE Trans. Circuits Syst. 56(9), 2132–2142 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Tseng, K.; Liang, T.: Novel high efficiency step-up converter. IEE Proc. Electr. Power Appl. 151(2), 182–190 (2004)CrossRefGoogle Scholar
  12. 12.
    Liang, T.; Tseng, K.: Analysis of integrated boost-flyback step-up converter. IEE Proc. Electr. Power Appl. 152(2), 217–225 (2005)CrossRefGoogle Scholar
  13. 13.
    Hsieh, Y.; Chen, J.; Liang, T.; Yang, L.: A novel high step-up dc-dc converter for a microgrid system. IEEE Trans. Power Electron. 26(4), 1127–1136 (2011)CrossRefGoogle Scholar
  14. 14.
    Hsieh, Y.; Chen, J.; Liang, T.; Yang, L.: Analysis and implementation of a novel single-switch high step-up dc–dc converter. IET Power Electron. 5(1), 11–21 (2010)CrossRefGoogle Scholar
  15. 15.
    Hsieh, Y.; Chen, J.; Liang, T.; Yang, L.: Novel high step-up dc-dc converter for distributed generation system. IEEE Trans. Indu. Electron. 60(4), 1473–1482 (2013)CrossRefGoogle Scholar
  16. 16.
    Chen, S.; Lao, M.; Hsieh, Y.; Liang, T.; Chen, K.: A novel switched-coupled-inductor dc-dc step-up converter and its derivatives. IEEE Trans. Ind. Appl. 51(1), 309–314 (2015)CrossRefGoogle Scholar
  17. 17.
    Liang, T.; Lee, J.: Novel high-conversion-ratio high-efficiency isolated bidirectional dc-dc converter. IEEE Trans. Ind. Electron. 62(7), 4492–4503 (2015)CrossRefGoogle Scholar
  18. 18.
    Hwu, K.; Jiang, W.: A KY converter integrated with a SR boost converter and coupled inductor. J. Power Electron. 17(3), 621–631 (2017)CrossRefGoogle Scholar
  19. 19.
    GaN Systems: Top-side cooled 100 V E-mode GaN transistor. GS61008T, Datasheet (2017 July)Google Scholar
  20. 20.
    GaN Systems: Bottom-side cooled 650 V E-mode GaN transistor. GS66516B, Datasheet (2017 July)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Electrical-Electronics Engineering DepartmentTrakya UniversityEdirneTurkey

Personalised recommendations