Computational Analysis of Unsteady Swirling Flow Around a Decelerating Rotating Porous Disk in Nanofluid

  • Talat Rafiq
  • M. MustafaEmail author
Research Article - Mechanical Engineering


Here, we analyze the unsteady nanofluid flow triggered around a decelerating (permeable) rotating disk immersed in an otherwise calm environment. The present model assumes that disk angular velocity follows inversely linear time dependency. By following a similarity approach, the distributions of velocity and thermal fields above the disk are estimated numerically for six nanoparticle materials, namely Ag, Cu, CuO, Fe3O4, TiO2 and Al2O3. The solutions involve a dimensionless parameter \(S\) measuring the decay rate of the disk angular velocity. We primarily focus on how solid volume fraction affects the key physical attributes, namely resisting torque, volumetric flow rate and cooling rate when unsteady action of the disk is present. Similar to pure fluid flow, there exists a critical unsteady parameter \(S = S^{*}\) which corresponds to the free disk requiring no torque. For some range of \(S\), flow field surrounding the disk revolves faster than the disk itself. Similar to the steady-state case, suction seems to contribute vitally toward heat transfer enhancement of nanoparticle working fluid. Radial and circular motions around the disk diminish, and axial velocity becomes uniform when disk is subjected to sufficient amount of suction.


Decelerating disk Rotating disk Nanoparticle Time-dependent suction Resisting torque 


  1. 1.
    von-Kármán, T.: Uber laminare and turbulente Reibung. Z. Angew. Math. Mech. 1, 233–252 (1921)zbMATHCrossRefGoogle Scholar
  2. 2.
    Cochran, W.G.: The flow due to a rotating disc. Math. Proc. Camb. Philos. Soc. 30, 365–375 (1934)zbMATHCrossRefGoogle Scholar
  3. 3.
    Benton, E.R.: On the flow due to a rotating disk. J. Fluid Mech. 24, 781–800 (1966)zbMATHCrossRefGoogle Scholar
  4. 4.
    McLeod, J.B.: Von Kármán’s swirling flow problem. Arch. Rational Mech. Anal. 33, 91–102 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Watson, L.T.; Wang, C.Y.: Deceleration of a rotating disk in a viscous fluid. Phys. Fluids 22, 2267–2269 (1979)zbMATHCrossRefGoogle Scholar
  6. 6.
    Zandbergen, P.J.; Dijkstta, D.: Von Kármán swirling flows. Annu. Rev. Fluid Mech. 19, 465–491 (1987)CrossRefGoogle Scholar
  7. 7.
    Ariel, P.D.: Computation of flow of a second grade fluid near a rotating disk. Int. J. Eng. Sci. 35, 1335–1357 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Andersson, H.I.; de Korte, E.: MHD flow of a power-law fluid over a rotating disk. Eur. J. Mech. B/Fluids 21, 317–324 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Miklavčič, M.; Wang, C.Y.: The flow due to a rough rotating disk. Z. Angew. Math. Phys. 55, 235–246 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Turkyilmazoglu, M.: MHD fluid flow and heat transfer due to a shrinking rotating disk. Comput. Fluids 90, 51–56 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Griffiths, P.T.: Flow of a generalised Newtonian fluid due to a rotating disk. Non-Newton. Fluid Mech. 221, 9–17 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mushtaq, A.; Mustafa, M.: Computations for nanofluid flow near a stretchable rotating disk with axial magnetic field and convective conditions. Results Phys. 7, 3137–3144 (2017)CrossRefGoogle Scholar
  13. 13.
    Tabassum, M.; Mustafa, M.: A numerical treatment for partial slip flow and heat transfer of non-Newtonian Reiner-Rivlin fluid due to rotating disk. Int. J. Heat Mass Transf. 123, 979–987 (2018)CrossRefGoogle Scholar
  14. 14.
    Hayat, T.; Khan, M.I.; Qayyum, S.; Khan, M.I.; Alsaedi, A.: Entropy generation for flow of Sisko fluid due to rotating disk. J. Mol. Liq. 264, 375–385 (2018)CrossRefGoogle Scholar
  15. 15.
    Mehmood, A.; Usman, M.; Weigand, B.: Heat and mass transfer phenomena due to a rotating non-isothermal wavy disk. Int. J. Heat Mass Transf. 129, 96–102 (2019)CrossRefGoogle Scholar
  16. 16.
    Ahmed, J.; Khan, M.; Ahmad, L.: Stagnation point flow of Maxwell nanofluid over a permeable rotating disk with heat source/sink. J. Mol. Liq. 287, 110–853 (2019)Google Scholar
  17. 17.
    Turkyilmazoglu, M.: Latitudinally deforming rotating sphere. Appl. Math. Model. 71, 1–11 (2019)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Renuka, A.; Muthtamilselvan, M.; Doh, D.H.; Cho, G.R.: Entropy analysis and nanofluid past a double stretchable spinning disk using Homotopy Analysis Method. Math. Comput. Simul. (2019). CrossRefGoogle Scholar
  19. 19.
    Das, S.K.; Choi, S.U.S.; Yu, W.; Pradeep, T.: Nanofluids: Science and Technology. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  20. 20.
    Wang, X.Q.; Mujumdar, A.S.: A review on nanofluids-part I: theoretical and numerical investigations. Braz. J. Chem. Eng. 25, 613–630 (2008)CrossRefGoogle Scholar
  21. 21.
    Kakac, S.; Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52, 3187–3196 (2009)zbMATHCrossRefGoogle Scholar
  22. 22.
    Mahian, O.; Kianifar, A.; Kalogirou, S.A.; Pop, I.; Wongwises, S.: A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 57, 582–594 (2013)CrossRefGoogle Scholar
  23. 23.
    Sidik, N.A.C.; Yazid, M.N.A.W.M.; Mamat, R.: A review on the application of nanofluids in vehicle engine cooling system. Int. Commun. Heat Mass Transf. 68, 85–90 (2015)CrossRefGoogle Scholar
  24. 24.
    Tiwari, R.K.; Das, M.K.: Heat transfer augmentation in a two sided lid driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)zbMATHCrossRefGoogle Scholar
  25. 25.
    Turkyilmazoglu, M.; Pop, I.: Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect. Int. J. Heat Mass Transf. 59, 167–171 (2013)CrossRefGoogle Scholar
  26. 26.
    Sheikholeslami, M.; Shehzad, S.A.: Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM. Int. J. Heat Mass Transf. 113, 796–805 (2017)CrossRefGoogle Scholar
  27. 27.
    Mahanthesh, B.; Gireesha, B.J.; Shashikumar, N.S.; Shehzad, S.A.: Marangoni convective MHD flow of SWCNT and MWCNT nanoliquids due to a disk with solar radiation and irregular heat source. Physica E 94, 25–30 (2017)CrossRefGoogle Scholar
  28. 28.
    Mahanthesh, B.; Gireesha, B.J.; Shashikumar, N.S.; Hayat, T.; Alsaedi, A.: Marangoni convection in Casson liquid flow due to an infinite disk with exponential space dependent heat source and cross-diffusion effects. Results Phys. 9, 78–85 (2018)CrossRefGoogle Scholar
  29. 29.
    Sheikholeslami, M.: Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput. Methods Appl. Mech. Eng. 334, 306–318 (2019)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Rashidi, M.M.; Abelman, S.; Mehr, N.F.: Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int. J. Heat Mass Transf. 62, 515–525 (2013)CrossRefGoogle Scholar
  31. 31.
    Seth, G.S.; Kumar, R.; Bhattacharyya, A.: Entropy generation of dissipative flow of carbon nanotubes in rotating frame with Darcy–Forchheimer porous medium: a numerical study. J. Mol. Liq. 268, 637–646 (2018)CrossRefGoogle Scholar
  32. 32.
    Hayat, T.; Khan, M.I.; Khan, T.A.; Khan, M.I.; Ahmad, S.; Alsaedi, A.: Entropy generation in Darcy–Forchheimer bidirectional flow of water-based carbon nanotubes with convective boundary conditions. J. Mole. Liq. 256, 629–638 (2018)CrossRefGoogle Scholar
  33. 33.
    Mahanthesh, B.; Gireesha, B.J.; Shehzad, S.A.; Rauf, A.; Sampath Kumar, P.B.: Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition. Physica B 537, 98–104 (2018)CrossRefGoogle Scholar
  34. 34.
    Makinde, O.D.; Mahanthesh, B.; Gireesha, B.J.; Shashikumar, N.S.; Monaledi, R.L.; Tshehla, M.S.: MHD nanofluid flow past a rotating disk with thermal radiation in the presence of aluminum and titanium alloy nanoparticles. Defect Diffus. Forum 384, 69–79 (2018)CrossRefGoogle Scholar
  35. 35.
    Mabood, F.; Shateyi, S.; Rashidi, M.M.; Momoniat, E.; Freidoonimehr, N.: MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction. Adv. Powder Technol. 27, 742–749 (2016)CrossRefGoogle Scholar
  36. 36.
    Mabood, F.; Khan, W.A.; Yavanovich, M.M.: Forced convection of nanofluid flow across horizontal circular cylinder with convective boundary condition. J. Mol. Liq. 222, 172–180 (2016)CrossRefGoogle Scholar
  37. 37.
    Ahmad, R.; Mustafa, M.: Model and comparative study for rotating flow of nanofluids due to convectively heated exponentially stretching sheet. J. Mol. Liq. 220, 635–641 (2016)CrossRefGoogle Scholar
  38. 38.
    Tian, X.Y.; Li, B.W.; Hu, Z.M.: Convective stagnation point flow of a MHD non Newtonian nanofluid towards a stretching plate. Int. J. Heat Mass Transf. 127, 768–780 (2018)CrossRefGoogle Scholar
  39. 39.
    Grosan, T.; Pop, I.: Axisymmetric mixed convection boundary layer flow past a vertical cylinder in a nanofluid. Int. J. Heat Mass Transf. 54, 3139–3145 (2011)zbMATHCrossRefGoogle Scholar
  40. 40.
    Dinarvand, S.; Hosseini, R.; Abdulhasansari, M.; Pop, I.: Buongiorno’s model for double-diffusive mixed convective stagnation-point flow of a nanofluid considering diffusiophoresis effect of binary base fluid. Adv. Powder Technol. 26, 1423–1434 (2015)CrossRefGoogle Scholar
  41. 41.
    Dinarvand, S.; Hosseini, R.; Pop, I.: Axisymmetric mixed convective stagnation-point flow of a nanofluid over a vertical permeable cylinder by Tiwari-Das nanofluid model. Powder Technol. 311, 147–156 (2017)CrossRefGoogle Scholar
  42. 42.
    Mustafa, M.; Khan, J.A.: Numerical study of partial slip effects on MHD flow of nanofluids near a convectively heated stretchable rotating disk. J. Mole. Liq. 234, 287–295 (2017)CrossRefGoogle Scholar
  43. 43.
    Oztop, H.F.; Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29, 1326–1366 (2008)CrossRefGoogle Scholar
  44. 44.
    Shampine, L. F.; Reichelt, M. W.; Kierzenka, J.: Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c (2000).

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.School of Natural Sciences (SNS)National University of Sciences and Technology (NUST)IslamabadPakistan

Personalised recommendations