Advertisement

Mass Transfer Correlation for Tubular Membrane-Based Liquid Desiccant Air-Conditioning System

  • Ertuğrul Cihan
  • Barış Kavasoğulları
  • Hasan DemirEmail author
Research Article - Chemical Engineering

Abstract

In this study, a tubular membrane-based liquid desiccant air-conditioning system was numerically simulated to obtain mass transfer correlation. The design parameters for the membrane-based liquid desiccant system (Re numbers and aspect ratio, L/D) were also optimized using the numerically obtained results. The mass transfer correlation was developed as a function of Reynolds numbers, Schmidt numbers and aspect ratio which indicates a ratio of the length to the diameter of the membrane tube. The effect of the aspect ratio and airflow velocity on the efficiency of the membrane-based liquid desiccant system was also investigated. COMSOL Multiphysics modules of this study were validated with the literature results. The maximum efficiency was obtained as 50% with an aspect ratio of 40 at low Re number of 50.

Keywords

Semipermeable membrane Membrane-based liquid desiccant air-conditioning system Dehumidification Liquid desiccant 

List of symbols

A, B, C

Antoine equation constants

b

Equation 9a, 9b, 9c

c

Concentration (mol m−3)

de

Equivalent diameter (m)

D

Membrane diameter (m)

DAB

Water vapor–air diffusivity (m2 s−1)

Dm

Water vapor–membrane diffusivity (m2 s−1)

Ds

Water vapor–desiccant solution diffusivity (m2 s−1)

k

Mass transfer coefficient (m s−1)

L

Fibre length (m)

m

Mass (kg)

M

Equation 9a, 9b, 9c

MA

Molar mass of water (kg mol−1)

N

Molar flux (mol m−1 s−1)

P

Pressure (kPa)

r

Radial distance (m)

R

Radius (m)

Ru

Universal gas constant (Pa m3 mol−1 K−1)

Re

Reynolds number

S

Cross-sectional area (m2)

Sc

Schmidt number

Sh

Sherwood number

t

Time (s)

T

Absolute temperature (K)

u

Velocity (m s−1)

z

Longitudinal distance (m)

Greek letters

ϕ

Relative humidity

δ

Membrane thickness (m)

α

Equation A1a

β

Equation A1a

κ

Equation A1a

π

Relative pressure

ξ

Mass fraction of solute (kg kg−1)

ρ

Density (kg m−3)

θ

Reduced temperature

μ

Dynamic viscosity (Pa s)

η

Efficiency

Subscripts

1,2,3,…

State numbers

a

Air

A

Equation 3a

c

At the critical point

e

Equivalent

i

Inner, inlet, any state

LiCl

Lithium chloride

m

Membrane

o

Outer, outlet

s

Solution

v

Vapor

w

Water

Superscript

*

Equation 3b

sat

Saturated

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Gediz Ilis, G.; Demir, H.: Influence of bed thickness and particle size on performance of microwave regenerated adsorption heat pump. Int. J. Heat Mass Transf. 123, 16–24 (2018).  https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.063 CrossRefGoogle Scholar
  2. 2.
    Ahmed, Y.S.; Gandhidasan, P.; Al-Farayedhi, A.A.: Thermodynamic analysis of liquid desiccants. Sol. Energy 62, 11–18 (1998).  https://doi.org/10.1016/S0038-092X(97)00087-X CrossRefGoogle Scholar
  3. 3.
    Kavasoğullari, B.; Cihan, E.; Demir, H.: Valorization of polycarbonate board as packing material for open CaCl2-water desiccant system. Environ. Prog. Sustain. Energy 37, 1727–1735 (2018).  https://doi.org/10.1002/ep.12826 CrossRefGoogle Scholar
  4. 4.
    Cihan, E.; Kavasoğulları, B.; Demir, H.: Enhancement of performance of open liquid desiccant system with surface additive. Renew. Energy 114, 1101–1112 (2017).  https://doi.org/10.1016/j.renene.2017.08.002 CrossRefGoogle Scholar
  5. 5.
    Isetti, C.; Nannei, E.; Magrini, A.: On the application of a membrane air-liquid contactor for air dehumidification. Energy Build. 25, 185–193 (1997).  https://doi.org/10.1016/S0378-7788(96)00993-0 CrossRefGoogle Scholar
  6. 6.
    Huang, S.M.; Qin, F.G.F.; Yang, M.; Yang, X.; Zhong, W.F.: Heat and mass transfer deteriorations in an elliptical hollow fiber membrane tube bank for liquid desiccant air dehumidification. Appl. Therm. Eng. 57, 90–98 (2013).  https://doi.org/10.1016/j.applthermaleng.2013.04.004 CrossRefGoogle Scholar
  7. 7.
    Huang, S.M.; Zhang, L.Z.; Pei, L.X.: Transport phenomena in a cross-flow hollow fibre membrane bundle used for liquid desiccant air dehumidification. Indoor Built Environ. 22, 559–574 (2013).  https://doi.org/10.1177/1420326X12452881 CrossRefGoogle Scholar
  8. 8.
    Huang, S.M.; Yang, M.: Heat and mass transfer enhancement in a cross-flow elliptical hollow fiber membrane contactor used for liquid desiccant air dehumidification. J. Memb. Sci. 449, 184–192 (2014).  https://doi.org/10.1016/j.memsci.2013.08.033 CrossRefGoogle Scholar
  9. 9.
    Zhang, L.Z.; Huang, S.M.; Pei, L.X.: Conjugate heat and mass transfer in a cross-flow hollow fiber membrane contactor for liquid desiccant air dehumidification. Int. J. Heat Mass Transf. 55, 8061–8072 (2012).  https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.041 CrossRefGoogle Scholar
  10. 10.
    Abdel-Salam, A.H.; Ge, G.; Simonson, C.J.: Performance analysis of a membrane liquid desiccant air-conditioning system. Energy Build. 62, 559–569 (2013).  https://doi.org/10.1016/j.enbuild.2013.03.028 CrossRefGoogle Scholar
  11. 11.
    Abdel-Salam, A.H.; Ge, G.; Simonson, C.J.: Thermo-economic performance of a solar membrane liquid desiccant air conditioning system. Sol. Energy 102, 56–73 (2014).  https://doi.org/10.1016/j.solener.2013.12.036 CrossRefGoogle Scholar
  12. 12.
    Ouyang, Y.W.; Zhang, L.Z.: Conjugate heat and mass transfer in a skewed flow hollow fiber membrane bank used for liquid desiccant air dehumidification. Int. J. Heat Mass Transf. 93, 23–40 (2016).  https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.009 CrossRefGoogle Scholar
  13. 13.
    Keniar, K.; Ghali, K.; Ghaddar, N.: Study of solar regenerated membrane desiccant system to control humidity and decrease energy consumption in office spaces. Appl. Energy 138, 121–132 (2015).  https://doi.org/10.1016/j.apenergy.2014.10.071 CrossRefGoogle Scholar
  14. 14.
    Yao, Y.; Yu, Y.; Zhu, Z.: Experimental investigations on surface vapor pressure models for LiCl-CaCl2 desiccant solutions. Sol. Energy 12, 1–13 (2016).  https://doi.org/10.1016/j.solener.2015.12.046 CrossRefGoogle Scholar
  15. 15.
    Conde, P.M.: Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design. Int. J. Therm. Sci. 43, 367–382 (2004).  https://doi.org/10.1016/j.ijthermalsci.2003.09.003 CrossRefGoogle Scholar
  16. 16.
    Huang, S.M.; Zhong, Z.; Yang, M.: Conjugate heat and mass transfer in an internally-cooled membrane-based liquid desiccant dehumidifier (IMLDD). J. Memb. Sci. 508, 73–83 (2016).  https://doi.org/10.1016/j.memsci.2016.02.026 CrossRefGoogle Scholar
  17. 17.
    Geankoplis, C.J.: Transport processes and separation process principles (includes unit operation), 4th edn. Prentice Hall International Inc, Upper Saddle River (2003)Google Scholar
  18. 18.
    Zhang, L.Z.: Coupled heat and mass transfer in an application-scale cross-flow hollow fiber membrane module for air humidification. Int. J. Heat Mass Transf. 55, 5861–5869 (2012).  https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.083 CrossRefGoogle Scholar
  19. 19.
    Sabek, S.; Ben Nasr, K.; Tiss, F.; Chouikh, R.; Guizani, A.: Performance investigation of desiccant liquid air membrane energy exchanger: air and lithium chloride effects. Int. J. Refrig 80, 145–157 (2017).  https://doi.org/10.1016/j.ijrefrig.2017.04.027 CrossRefGoogle Scholar
  20. 20.
    Bai, H.; Zhu, J.; Chen, Z.; Ma, L.; Wang, R.; Li, T.: Performance testing of a cross-flow membrane-based liquid desiccant dehumidification system. Appl. Therm. Eng. 119, 119–131 (2017).  https://doi.org/10.1016/j.applthermaleng.2017.03.058 CrossRefGoogle Scholar
  21. 21.
    Abdel-Salam, A.H.; Simonson, C.J.: Capacity matching in heat-pump membrane liquid desiccant air conditioning systems. Int. J. Refrig 48, 166–177 (2014).  https://doi.org/10.1016/j.ijrefrig.2014.09.004 CrossRefGoogle Scholar
  22. 22.
    Chen, Z.; Zhu, J.; Bai, H.; Yan, Y.; Zhang, L.: Experimental study of a membrane-based dehumidification cooling system. Appl. Therm. Eng. 115, 1315–1321 (2017).  https://doi.org/10.1016/j.applthermaleng.2016.10.153 CrossRefGoogle Scholar
  23. 23.
    Chen, Z.; Zhu, J.; Bai, H.: Performance assessment of a membrane liquid desiccant dehumidification cooling system based on experimental investigations. Energy Build. 139, 665–679 (2017).  https://doi.org/10.1016/j.enbuild.2017.01.046 CrossRefGoogle Scholar
  24. 24.
    Das, R.S.; Jain, S.: Experimental performance of indirect air-liquid membrane contactors for liquid desiccant cooling systems. Energy 57, 319–325 (2013).  https://doi.org/10.1016/j.energy.2013.05.013 CrossRefGoogle Scholar
  25. 25.
    Zhang, N.; Zhang, L.Z.; Xu, J.C.: A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: a transient performance study. Int. J. Refrig 67, 143–156 (2016).  https://doi.org/10.1016/j.ijrefrig.2016.01.001 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringOsmaniye Korkut Ata UniversityOsmaniyeTurkey
  2. 2.Department of Chemical EngineeringOsmaniye Korkut Ata UniversityOsmaniyeTurkey

Personalised recommendations