Mechanical and Dynamic Properties of Basalt Fiber-Reinforced Composites with Nanoclay Particles

  • Mehmet BulutEmail author
  • Ömer Yavuz Bozkurt
  • Ahmet Erkliğ
  • Hakan Yaykaşlı
  • Özkan Özbek
Research Article - Mechanical Engineering


Mechanical and dynamic characteristics of basalt fiber-reinforced polymer (BFRP) composites were experimentally investigated in terms of natural frequency and damping properties. Epoxy resin of BFRP composites was modified by nanoclay (NC) particles at different weight contents (0, 0.5, 1, 1.5, 2, and 3 wt%). Mechanical tests were performed with tensile, flexural, and impact measurements in accordance with ASTM standards. Impact properties of the samples were evaluated by using Charpy impact tests in accordance with ISO 179/92 standards for both of edgewise and flatwise impact directions. After the mechanical and impact tests, damage mechanisms of the fractured samples were analyzed over the damaged regions, and their morphologies were analyzed by using scanning electron microscopy. In vibration tests, dynamic properties such as loss and storage modulus were evaluated only for fundamental natural frequency, and their corresponding damping properties were measured by using the half-power bandwidth method from frequency response curves. Results showed that the small amount of NC particle incorporations into BFRP composites was found the most effective for damping and natural frequency of the produced NC modified basalt/epoxy nanocomposites, and incorporation of NC particles into the epoxy resin improves the flexural strength up to the 29%, tensile strength up to the 7.61%, and impact resistance (edgewise impact) up to the 16.8%, at NC contents of 1.5, 2, and 0.5 wt%, respectively.


NC particle Basalt fiber Impact resistance Tensile strength Flexural strength Vibration and damping Epoxy resin Natural frequency 


  1. 1.
    Khosravi, H.; Farsani, R.E.: Enhanced mechanical properties of unidirectional basalt fiber/epoxy composites using silane-modified Na + -montmorillonite nanoclay. Polym. Test. 55, 135 (2016)CrossRefGoogle Scholar
  2. 2.
    Chairman, C.A.; Kumaresh-Babu, S.P.: Mechanical and abrasive wear behavior of glass and basalt fabric-reinforced epoxy composites. J. Appl. Polym. Sci. 130(2013), 120–130 (2013)CrossRefGoogle Scholar
  3. 3.
    Hassani, N.M.; Fereidoon, A.; Fereidoon, A.; Ghorbanzadeh Ahangari, M.: Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete. Compos. Struct. 191, 231 (2018)CrossRefGoogle Scholar
  4. 4.
    Ross, A.: Basalt fibers: alternative to glass. Compos. Technol. 44, 12 (2006)Google Scholar
  5. 5.
    Quagliarini, E.; Monni, F.; Lenci, S.; Bondioli, F.: Tensile characterization of basalt fiber rods and ropes: a first contribution. Constr. Build. Mater. 34, 372 (2012)CrossRefGoogle Scholar
  6. 6.
    Lopresto, V.; Leone, C.; De Iorio, I.: Mechanical characterisation of basalt fibre reinforced plastic. Compos. B Eng. 42, 717 (2011)CrossRefGoogle Scholar
  7. 7.
    Parnas R.; Shaw M.; Liu Q.: Basalt fiber reinforced polymer composites. The New England transportation consortium. Project No. 03–7 (2007).Google Scholar
  8. 8.
    Borri, A.; Corradi, M.; Speranzini, E.: Reinforcement of wood with natural fibers. Compos. B Eng. 53, 1 (2013)CrossRefGoogle Scholar
  9. 9.
    Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A.: A review on basalt fibre and its composites. Compos. B Eng. 74, 74 (2015)CrossRefGoogle Scholar
  10. 10.
    Sim, J.; Park, C.; Moon, D.Y.: Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. B Eng. 36, 504 (2005)CrossRefGoogle Scholar
  11. 11.
    Yuan, Q.; Misra, R.D.K.: Impact fracture behavior of clayereinforced polypropylene nanocomposites. J. Polym. 47, 4421 (2006)CrossRefGoogle Scholar
  12. 12.
    Park, S.; Kim, B.; Seo, D.; Rhee, K.; Lyu, Y.: Effects of a silane treatment on the mechanical interfacial properties of montmorillonite/epoxy nanocomposites. Mater. Sci. Eng., A 526, 74 (2009)CrossRefGoogle Scholar
  13. 13.
    Saminathan, K.; Selvakumar, P.; Bhatnagar, N.: Fracture studies of polypropylene/nanoclay composite. Part I: effect of loading rates on essential work of fracture. Polym. Test. 27, 296–307 (2008)CrossRefGoogle Scholar
  14. 14.
    Selvakumar, V.; Palanikumar, K.; Palanivela, K.: Studies on mechanical characterization of polypropylene/Na + -MMT nanocomposites. Miner. Mater. Eng. 9, 671 (2010)Google Scholar
  15. 15.
    Khalili, S.M.R.; Farsani, R.E.; Soleimani, N.; Hedayatnasab, Z.: Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. J. Thermo. Compos. Mater. 29, 1416 (2016)CrossRefGoogle Scholar
  16. 16.
    Farsani, R.E.; Khalili, S.M.R.; Hedayatnasab, Z.: Influence of thermal conditions on the tensile properties of basalt fiber reinforced polypropylene–clay nanocomposites. Mater. Des. 53, 540 (2014)CrossRefGoogle Scholar
  17. 17.
    Gabr, M.H.; Okumur, W.; Ued, H.; Kuriyama, W.; Uzawa, K.; Kimpar, I.: Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay. Compos. B Eng. 69, 94 (2015)CrossRefGoogle Scholar
  18. 18.
    Soleimani, N.; Khalili, S.M.; Farsani, R.E.; Hedayatnasab, Z.: Mechanical properties of nanoclay reinforced polypropylene composites at cryogenic temperature. J. Reinf. Plast. Compos. 31, 959 (2012)CrossRefGoogle Scholar
  19. 19.
    Chowdhury, F.H.; Hosur, M.V.; Jeelani, S.: Studies on the flexural and thermomechanical properties of woven carbon/nanoclay-epoxy laminates. Mat. Sci. Eng. A Struct. 421, 298 (2006)CrossRefGoogle Scholar
  20. 20.
    Timmerman, J.F.; Hayes, B.S.; Seferis, J.C.: Nanoclay reinforcement effects on the cryogenic microcracking of carbon fiber/epoxy composites. Compos. Sci. Technol. 62, 1249 (2002)CrossRefGoogle Scholar
  21. 21.
    Mlyniec, A.; Korta, J.; Kudelski, R.; Uhl, T.: The influence of the laminate thickness, stacking sequence and thermal aging on the static and dynamic behavior of carbon/epoxy composites. Compos. Struct. 118, 208–216 (2014)CrossRefGoogle Scholar
  22. 22.
    Kumar, L.R.; Datta, P.K.; Prabhakara, D.L.: Dynamic instability characteristics of laminated composite doubly curved panels subjected to partially distributed follower edge loading. Int. J. Solid Struct. 42, 2243–2264 (2005)CrossRefGoogle Scholar
  23. 23.
    Thomas, S.; Geethamma, V.G.; Kalaprasad, G.; Groeninckx, G.: Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos. Part A: Manuf. 36, 1499–1506 (2005)CrossRefGoogle Scholar
  24. 24.
    Arumuga Prabu, V.; Uthayakumar, M.; Manikandan, V.; Rajini, N.; Jeyaraj, P.: Influence of redmud on the mechanical, damping and chemical resistance properties of banana/polyester hybrid composites. Mater. Des. 64, 270–279 (2014)CrossRefGoogle Scholar
  25. 25.
    Sarlin, E.; Liu, Y.; Vippola, M.; Zogg, M.; Ermanni, P.; Vuorinen, J.; Lepistö, T.: Vibration damping properties of steel/rubber/composite hybrid structures. Compos. Struct. 94, 3327–3335 (2012)CrossRefGoogle Scholar
  26. 26.
    Bulut, M.; Bozkurt, Ö.; Erkliğ, A.: Damping and vibration characteristics of basalt-aramid/epoxy hybrid composite laminates. J. Polym. Eng. 36, 173–180 (2015)CrossRefGoogle Scholar
  27. 27.
    Bozkurt, Ö.Y.; Gökdemir, M.E.: Effect of basalt fiber hybridization on the vibration-damping behavior of carbon fiber/epoxy composites. Polym. Compos. 39, 2274–2282 (2018). CrossRefGoogle Scholar
  28. 28.
    Kabir, A.; Hoa, S.V.: Improvement of vibration damping and flexural fatigue property incorporating nanoclay into glass/epoxy composite. In: Komorowski, J. (ed.) ICAF 2011 Structural Integrity: Influence of Efficiency and Green Imperatives. Springer, Dordrecht (2011)Google Scholar
  29. 29.
    Man, T.K.; Kyong, Y.R.; Inhwa, J.; Soo, J.P.; David, H.: Influence of seawater absorption on the vibration damping characteristics and fracture behaviors of basalt/CNT/epoxy multiscale composites. Compos. Part B: Eng. 63, 61–66 (2014)CrossRefGoogle Scholar
  30. 30.
    Bozkurt, Ö.Y.; Erkliğ, A.; Bozkurt, Y.T.: Influence of basalt fiber hybridization on the vibration-damping properties of glass fiber reinforced epoxy laminates. Mater. Res. Exp. 6, 015301 (2019)CrossRefGoogle Scholar
  31. 31.
    Bahari-Sambran, F.; Meuchelboeck, J.; Kazemi-Khasragh, E.; Eslami-Farsani, R.; Arbab Chirani, S.: The effect of surface modified nanoclay on the interfacial and mechanical properties of basalt fiber metal laminates. Thin-Wall. Struct. 144, 106343 (2019)CrossRefGoogle Scholar
  32. 32.
    Li, X.; Yahya, M.Y.; Nia, A.B.; Wang, Z.; Yang, J.; Lu, G.: Dynamic failure of basalt/epoxy laminates under blast—Experimental observation. Int. J. Impact Eng 102, 16–26 (2017)CrossRefGoogle Scholar
  33. 33.
    Bozkurt, Ö.Y.; Bulut, M.; Özbek, Ö.: Effect of fibre orientations on damping and vibration characteristics of basalt epoxy composite laminates. In Proceedings of the World Congress on Civil, Structural, and Environmental Engineering (CSEE’16) (2016)Google Scholar
  34. 34.
    Bedon, C.; Fasan, M.; Amadio, C.: Buildings vibration analysis and dynamic characterization of structural glass elements with different restraints based on operational modal analysis. Buildings 9, 13 (2019)CrossRefGoogle Scholar
  35. 35.
    Park, J.H.; Jana, S.C.: Mechanism of exfoliation of nanoclay particles in epoxy–clay nanocomposites. Macromolecules 36, 2758–2768 (2003)CrossRefGoogle Scholar
  36. 36.
    Wang, T.Y.; Liu, S.C.; Tsai, J.L.: Micromechanical stick-slip model for characterizing damping responses of single-walled carbon nanotube nanocomposites. J. Compos. Mater. 50, 57–73 (2016)CrossRefGoogle Scholar
  37. 37.
    Koratkar, N.A.; Suhr, J.; Joshi, A.; et al.: Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites. Appl. Phys. Lett. 87, 063102 (2005)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Mechanical Engineering Department, Faculty of EngineeringHakkari UniversityHakkariTurkey
  2. 2.Mechanical Engineering Department, Faculty of EngineeringGaziantep UniversityGaziantepTurkey

Personalised recommendations