Advertisement

Study of the Production of Strange Particles in Proton–Proton Collisions at √s = 0.9 TeV

  • M. AjazEmail author
  • M. Tufail
  • Y. Ali
Research Article - Physics
  • 15 Downloads

Abstract

The differential yield of strange mesons \( (K_{s}^{0} ,\phi ) \) and singly and doubly strange baryons (Λ, \( \bar{\varLambda } \) and Ξ) in pp collision at 0.9 TeV in the transverse momentum (pT) ranging from 0.1 to 3.5 GeV/c and in the rapidity region of |y| <0.75 is reported. The spectra obtained by Monte Carlo simulations with event generators: EPOS 1.99, EPOS-LHC, HIJING 1.38, QGSJETII-04 and Sibyll2.3c, are compared with the ALICE measurements. For \( K_{s}^{0} \), EPOS-LHC, Sibyll2.3c and QGSJETII-04 models’ predictions are closer to the experimental data at low pT. For Λ and \( \bar{\varLambda } \), EPOS 1.99 and QGSJETII-04 predict in some of the pT regions, while only EPOS 1.99 model predicts well the Ξ spectra. QGSJETII-04 and Sibyll2.3c predict well the distribution of \( \phi \) mesons at high pT. For Λ/\( K_{s}^{0} \), only QGSJETII-04 predicts the ratio very well. Although the models are qualitatively compatible with the data, none of them predict all the distributions over the entire pT range.

Keywords

Strange hadrons LHC energies Models’ predictions QCD 

Notes

Acknowledgement

This work was supported by the Higher Education Commission (HEC) of Pakistan by the Grant No. 20-3379/NRPU/R&D/HEC/2014.

References

  1. 1.
    Sjöstrand, T.; Mrenna, S.; Skands, P.Z.: PYTHIA 6.4 physics and manual. J High Energy Phys 0605, 026 (2006)CrossRefGoogle Scholar
  2. 2.
    Engel, R.; Ranft, J.; Roesler, S.: Hard diffraction in hadron-hadron interactions and in photoproduction. Phys. Rev. D 52, 1459 (1995)CrossRefGoogle Scholar
  3. 3.
    Becattini, F.; Heinz, U.W.: Thermal hadron production in pp and p{\bar p} collisions. Z. Phys. C 76, 269 (1997)CrossRefGoogle Scholar
  4. 4.
    Kraus, I.; Cleymans, J.; Oeschler, H.; Redlich, K.: Particle production in p–p collisions and predictions for √s = 14 TeV at the CERN Large Hadron Collider (LHC). Phys. Rev. C 79, 014901 (2009)CrossRefGoogle Scholar
  5. 5.
    Becattini, F.; Castorina, P.; Milov, A.; Sat, H.: Predictions of hadron abundances in pp collisions at the LHC. J. Phys. G 38, 025002 (2011)CrossRefGoogle Scholar
  6. 6.
    Sjöstrand, T.; Skands, P.Z.: Transverse-momentum-ordered showers and interleaved multiple interactions. Eur. Phys. J. C 39, 129 (2005)CrossRefGoogle Scholar
  7. 7.
    Aamodt, K.; et al., (ALICE Collaboration).: Strange particle production in proton–proton collisions at √s = 0.9 TeV with ALICE at the LHC. Eur. Phys. J. C 71, 1594 (2011).Google Scholar
  8. 8.
    Werner, K.; Liu, F.M.; Pierog, T.: Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron-gold collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 74, 044902 (2006)CrossRefGoogle Scholar
  9. 9.
    Pierog, T.; et al.: EPOS LHC: test of collective hadronization with data measured at the CERN Large Hadron Collider. Phys. Rev. C 92, 034906 (2015)CrossRefGoogle Scholar
  10. 10.
    Wang, X.; Gyulassy, M.: hijing: a Monte Carlo model for multiple jet production in pp, pA, and AA collisions. Phys. Rev. D 44, 3501 (1991)CrossRefGoogle Scholar
  11. 11.
    Ostapchenko, S.: Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: QGSJET-II model. Phys. Rev. D 83, 014018 (2011)CrossRefGoogle Scholar
  12. 12.
    Engel, R., Gaisser, T.K., Riehn, F., Stanev, T.: Proceeding of 34th International Cosmic Ray Conference, The Hague (Netherlands), 1 (2015) 1313Google Scholar
  13. 13.
    Ahn, E.-J.; Engel, R.; Gaisser, T.K.; Lipari, P.; Stanev, T.: Phys. Rev. D 80, 094003 (2009)CrossRefGoogle Scholar
  14. 14.
    Ajaz, M.; Khan, I.; Suleymanov, M.K.: Production cross-section of heavy flavoured hadrons in pp collision at √s = 7 TeV. Mod. Phys. Lett. A 34, 1950150 (2019)CrossRefGoogle Scholar
  15. 15.
    Ali, Q.; Ali, Y.; Haseeb, M.; Ajaz, M.: Transverse momentum and nuclear modification factor distributions of charged particles in p + Pb and p + p collisions at √s = 5.02 TeV. Mod. Phys. Lett. A 34, 195 (2019)Google Scholar
  16. 16.
    Ajaz, M.; et al.: Models prediction of particles ratio in pp collisions at √s = 900 GeV. Indian J. Phys. (2019).  https://doi.org/10.1007/s12648-019-01504-9 CrossRefGoogle Scholar
  17. 17.
    Ajaz, M.; Khan, I.; Ali, Y.; Khan, K.H.: Charged particles p T spectra and the correlation between p t and all charged particles at √S = 900 GeV. Int. J. Theor. Phys. 58, 2027 (2019)CrossRefGoogle Scholar
  18. 18.
    Khan, R.; Ajaz, M.; Ali, Y.: Transverse momentum distributions of pions, kaons and protons in p–p interactions at 2.76 TeV. Int. J. Theor. Phys. 58, 1901 (2019)CrossRefGoogle Scholar
  19. 19.
    Ali, Q.; Ali, Y.; Haseeb, M.; Ajaz, M.: Distributions of charged particles’ transverse momentum and pseudorapidity in pp collisions at 0.9 TeV. Pis’ma v ZhETF, 109, 511–512 (2019); JETP Lett. 109, 495–498 (2019).Google Scholar
  20. 20.
    Ajaz, M.; Maryam, : p T spectra of charged hadrons in proton-proton collisions at √s = 200 GeV. Mod. Phys. Lett. A 34, 1950148 (2019)CrossRefGoogle Scholar
  21. 21.
    Ajaz, M.; Tufail, M.; Ali, Y.: Production of light flavoured charged hadron in pp collisions at 900 GeV with hadron production models. Mod. Phys. Lett. A 34, 1950100 (2019)CrossRefGoogle Scholar
  22. 22.
    Ajaz, M.; Bilal, M.; Ali, Y.; Suleymanov, M.K.; Khan, K.H.: Models prediction of hadrons production ratios in pp collisions at √s = 7 TeV. Mod. Phys. Lett. A 34, 1950090 (2019)CrossRefGoogle Scholar
  23. 23.
    Ali, Y.; Ullah, S.; Khattak, S.A.; Ajaz, M.: Study of pion kaon and proton in proton–carbon interactions at 158 GeV/c using hadron production models. Mod. Phys. Lett. A 34, 1950078 (2019)CrossRefGoogle Scholar
  24. 24.
    Ali, Y.; Ali, Q.; Haseeb, M.; Ajaz, M.; Tabassam, U.: Study of pseudorapidity and transverse- momentum distributions of charged particles in pp Interactions at √s = 13 TeV Using Hadron Production. Int. J. Theo. Phys. 58, 931–938 (2019)CrossRefGoogle Scholar
  25. 25.
    Ali, Q.; Ali, Y.; Haseeb, M.; Tabassam, U.; Ajaz, M.; Ullah, S.: Study of transverse momentum distributions in p–Pb interactions at 0.9 and 5.02 TeV. Mod. Phys. Lett. A 33, 1850179 (2018)CrossRefGoogle Scholar
  26. 26.
    Ullah, S.; Ajaz, M.; Wazir, Z.; Ali, Y.; Khan, K.H.; Younis, H.: Hadron production models’ prediction for pT distribution of charged hadrons in pp interactions at 7 TeV. Sci. Rep. 9, 11811 (2019)CrossRefGoogle Scholar
  27. 27.
    Ajaz, M.; Ali, Y.; Ullah, S.; Ali, Q.; Younis, H.: Study of hadrons produced in proton-carbon interactions at 120 GeV/c using hadron-production models. Phys. Atom. Nucl. 82, 291–298 (2019)CrossRefGoogle Scholar
  28. 28.
    Ullah, S.; Ajaz, M.; Ali, Y.: Spectra of strange hadrons and their role in neutrino flux prediction. EPL 123, 31001 (2018)CrossRefGoogle Scholar
  29. 29.
    Ullah, S.; Ali, Y.; Ajaz, M.; Tabassam, U.; Ali, Q.: π±, k±, protons and antiprotons production in proton carbon interactions at 31 GeV/c using hadron production models. Int. J. Mod. Phys. A 33, 1850108 (2018)CrossRefGoogle Scholar
  30. 30.
    Ajaz, M.; Ullah, S.; Ali, Y.; Younis, H.: Comparison of hadron production models for π±, k±, protons and antiprotons production in proton carbon interactions at 60 GeV/c. Mod. Phys. Lett. A 33, 1850038 (2018)CrossRefGoogle Scholar
  31. 31.
    Ajaz, M.; Ali, Y.; Ullah, S.; Ali, Q.; Tabassam, U.: Comparison of different hadron production models for the study of π±, k±, protons and antiprotons production in proton carbon interactions at 90 GeV/c. Mod. Phys. Lett. A 33, 1850079 (2018)CrossRefGoogle Scholar
  32. 32.
    Tabassam, U.; Ali, Y.; Ullah, S.; Ajaz, M.; et al.: Observation of universality for high p T distribution at LHC energies. Int. J. Mod. Phys. E 27, 1850036 (2018)CrossRefGoogle Scholar
  33. 33.
    Tanabashi, M.; et al. (Particle Data Group). Review of particle physics. Phys. Rev. D 98, 030001 (2018).Google Scholar
  34. 34.
    Pierog, T.; Werner, K.: How to relate particle physics and air shower development: The EPOS model. Proceedings of the 31st ICRC, Lodz, (2009).Google Scholar
  35. 35.
    Wang, X.: Role of multiple minijets in high-energy hadronic reactions. Phys. Rev. D 43, 104 (1991)CrossRefGoogle Scholar
  36. 36.
    Kalmykov, N.N.; et al.: EAS and a quark—gluon string model with jets Bull. Russ. Acad. Sci. Phys. 58, 1966 (1994)Google Scholar
  37. 37.
    Ahn, E.J.; Engel, R.; Gaisser, T.K.; Lipari, P.; Stanev, T.: Cosmic ray event generator Sibyll 2.1. Phys. Rev. D 80, 094003 (2009)CrossRefGoogle Scholar
  38. 38.
    Riehn, F.; Engel, R.; Fedynitch, A.; Gaisser, T.; Stanev, T.: A new version of the event generator Sibyll PoS(ICRC2015) 558.Google Scholar
  39. 39.
    Riehn, F.; et al.: The hadronic interaction model Sibyll 2.3c and Feynman scaling. In: 35th International Cosmic Ray Conference Bexco, Busan, Korea 10-20 July, 2017, PoS(ICRC2017) 301.Google Scholar
  40. 40.
    Riehn, F.: Hadronic interaction model SIBYLL. ISAPP school, LHC meets Cosmic Rays, CERN, Switzerland Oct. 28–Nov. 02, 2018Google Scholar
  41. 41.
    Buckley, A.; et al.: Rivet user manual. Comput. Phys. Commun. 184, 2803–2819 (2013)CrossRefGoogle Scholar
  42. 42.
    Dobbs, M.; Hansen, J.B.: The HepMC C++ Monte Carlo event record for high energy physics. Comput. Phys. Commun. 134, 41–46 (2001)CrossRefGoogle Scholar
  43. 43.
    Whalley, M.; et al.: The Les Houches accord PDFs (LHAPDF) and LHAGLUE arXiv:hep-ph/0508110
  44. 44.
    Bourilkov, D.; et al.: LHAPDF: PDF use from the Tevatron to the LHC arXiv:hep-ph/0605240
  45. 45.
    Cacciari, M.; Salam, G.P.: Dispelling the myth for the jet-finder. Phys. Lett. B 641, 57–61 (2006)CrossRefGoogle Scholar
  46. 46.
    Albrow, M.G.; et al.: Tevatron-for-LHC conference report of the QCD Working Group, Fermilab-Conf-06-359, hep-ph/0610012.Google Scholar
  47. 47.
    Moraes, A.; (ATLAS Collaboration), ATLAS Note ATL-COM-PHYS-2009-119 (2009).Google Scholar
  48. 48.
    Skands, P.Z.: Contribution to the 1st international workshop on multiple partonic interactions at the LHC, Perugia, Italy, Oct. 2008, Fermilab-Conf-09-113-T. arXiv:0905.3418[hep-ph] and arXiv:1005.3457

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of PhysicsAbdul Wali khan University MardanMardanPakistan
  2. 2.Department of PhysicsCOMSATS University IslamabadIslamabadPakistan

Personalised recommendations