Advertisement

Optimizing Ammonia Removal from Landfill Leachate Using Natural and Synthetic Zeolite Through Statically Designed Experiment

  • Mohammad Arif Budiman Pauzan
  • Mohd Hafiz PutehEmail author
  • Ali Yuzir
  • Mohd Hafiz Dzarfan Othman
  • Roswanira Abdul Wahab
  • Muzaffar Zainal Abideen
Research Article - Civil Engineering
  • 24 Downloads

Abstract

Water is an essential commodity that supports the very existence of life on earth; hence, contamination of ground and water bodies with harmful substances liberated by landfill leachate can seriously impact the environment and well-being of mankind. In this context, explorations in search of economically attractive avenues to treat landfill leachate merit scientific pertinence. A response surface methodology approach based on a three-factor three-level central composite design was applied to compare and optimize the removal of ammoniacal nitrogen (NH3–N) from landfill leachate. In this study, the efficacy of natural zeolite, clinoptilolite, and synthetic zeolite, Sigma 96096, as adsorbents was investigated for parameters, viz. zeolite dosage, particle size, and ratio of leachate to distilled water, respectively. Under optimized conditions, clinoptilolite (2 g/L, 50 μm, and 50%) and Sigma 96096 (4 g/L, 150 μm, and 50%) effectively removed 58.2% and 37.8% of NH3–N, respectively. The equilibrium isotherms of both sorbents for the sorption of NH3–N were also well described by the Freundlich and Langmuir adsorption isotherms, respectively. The study found clinoptilolite was more efficient than Sigma 96096 in removing NH3–N, envisaging its suitability for complementing the current treatment processes to treat landfill leachate.

Keywords

Zeolite Leachate Ammoniacal nitrogen Response surface methodology (RSM) Adsorption isotherm 

Notes

Acknowledgements

This study was funded by the Ministry of Higher Education (MOHE), Malaysia, and Universiti Teknologi Malaysia (UTM) under GUP Grant Tier-1 with Vot No. 09H03 and Tier-2 with Vot No. 07J11. The authors are thankful to the Environmental Engineering Department of Faculty of Civil Engineering and the Institute of Water and Resource Management, UTM, for allowing researchers to work in the laboratory.

Supplementary material

13369_2019_4204_MOESM1_ESM.docx (2.6 mb)
Supplementary material 1 (DOCX 2683 kb)

References

  1. 1.
    Al Sabahi, E.; Rahim, S.A.; Wan Zuhairi, W.Y.; Al Nozaily, F.; Alshaebi, F.: The characteristics of leachate and groundwater pollution at municipal solid waste landfill of Ibb City, Yemen. Am. J. Environ. Sci. 5, 256–266 (2009).  https://doi.org/10.3844/ajessp.2009.256.266 CrossRefGoogle Scholar
  2. 2.
    Rafizul, I.M.; Alamgir, M.: Characterization and tropical seasonal variation of leachate: results from landfill lysimeter studied. Waste Manag. 32, 2080–2095 (2012).  https://doi.org/10.1016/j.wasman.2012.01.020 CrossRefGoogle Scholar
  3. 3.
    Syafalni,; Lim, H.K.; Ismail, N.; Abustan, I.; Murshed, M.F.; Ahmad, A.: Treatment of landfill leachate by using lateritic soil as a natural coagulant. J. Environ. Manag. 112, 353–359 (2012).  https://doi.org/10.1016/j.jenvman.2012.08.001 CrossRefGoogle Scholar
  4. 4.
    Suratman, S.; Sailan, M.I.; Hee, Y.Y.; Bedurus, E.A.; Latif, M.T.: A preliminary study of water quality index in Terengganu River Basin, Malaysia (Kajian Awal Indeks Kualiti Air di Lembangan Sungai Terengganu, Malaysia). Sains Malaysiana 44, 67–73 (2015).  https://doi.org/10.5923/j.microbiology.20150502.01 CrossRefGoogle Scholar
  5. 5.
    Primo, O.; Rivero, M.J.; Urtiaga, A.M.; Ortiz, I.: Nitrate removal from electro-oxidized landfill leachate by ion exchange. J. Hazard. Mater. 164, 389–393 (2009).  https://doi.org/10.1016/j.jhazmat.2008.08.012 CrossRefGoogle Scholar
  6. 6.
    Turan, N.G.; Ergun, O.N.: Removal of Cu(II) from leachate using natural zeolite as a landfill liner material. J. Hazard. Mater. 167, 696–700 (2009).  https://doi.org/10.1016/j.jhazmat.2009.01.047 CrossRefGoogle Scholar
  7. 7.
    Wiszniowski, J.; Surmacz-Górska, J.; Robert, D.; Weber, J.V.: The effect of landfill leachate composition on organics and nitrogen removal in an activated sludge system with bentonite additive. J. Environ. Manag. 85, 59–68 (2007).  https://doi.org/10.1016/j.jenvman.2006.08.001 CrossRefGoogle Scholar
  8. 8.
    Gotvajn, A.Ž.; Tišler, T.; Zagorc-Končan, J.: Comparison of different treatment strategies for industrial landfill leachate. J. Hazard. Mater. 162, 1446–1456 (2009).  https://doi.org/10.1016/j.jhazmat.2008.06.037 CrossRefGoogle Scholar
  9. 9.
    Kargi, F.; Pamukoglu, M.Y.: Adsorbent supplemented biological treatment of pre-treated landfill leachate by fed-batch operation. Bioresour. Technol. 94, 285–291 (2004).  https://doi.org/10.1016/j.biortech.2004.01.003 CrossRefGoogle Scholar
  10. 10.
    Yusof, N.; Haraguchi, A.; Hassan, M.A.; Othman, M.R.; Wakisaka, M.; Shirai, Y.: Measuring organic carbon, nutrients and heavy metals in rivers receiving leachate from controlled and uncontrolled municipal solid waste (MSW) landfills. Waste Manag. 29, 2666–2680 (2009).  https://doi.org/10.1016/j.wasman.2009.05.022 CrossRefGoogle Scholar
  11. 11.
    Weatherley, L.R.; Miladinovic, N.D.: Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite. Water Res. 38, 4305–4312 (2004).  https://doi.org/10.1016/j.watres.2004.08.026 CrossRefGoogle Scholar
  12. 12.
    Jorgensen, T.C.; Weatherley, L.R.: Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Res. 37, 1723–1728 (2003).  https://doi.org/10.1016/S0043-1354(02)00571-7 CrossRefGoogle Scholar
  13. 13.
    Pinho, P.; Dias, T.; Cruz, C.; Sim Tang, Y.; Sutton, M.A.; Martins-Loução, M.A.; Máguas, C.; Branquinho, C.: Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. J. Appl. Ecol. 48, 1107–1116 (2011).  https://doi.org/10.1111/j.1365-2664.2011.02033.x CrossRefGoogle Scholar
  14. 14.
    Wang, Y.; Liu, S.; Xu, Z.; Han, T.; Chuan, S.; Zhu, T.: Ammonia removal from leachate solution using natural Chinese clinoptilolite. J. Hazard. Mater. 136, 735–740 (2006).  https://doi.org/10.1016/j.jhazmat.2006.01.002 CrossRefGoogle Scholar
  15. 15.
    Zainol, M.M.; Amin, N.A.S.; Asmadi, M.: Preparation and characterization of impregnated magnetic particles on oil palm frond activated carbon for metal ions removal. Sains Malaysiana. 46, 773–782 (2017).  https://doi.org/10.17576/jsm-2017-4605-12 CrossRefGoogle Scholar
  16. 16.
    Ahmed, F.N.; Lan, C.Q.: Treatment of landfill leachate using membrane bioreactors: a review. Desalination 287, 41–54 (2012).  https://doi.org/10.1016/j.desal.2011.12.012 CrossRefGoogle Scholar
  17. 17.
    Ruiz, G.; Jeison, D.; Rubilar, O.; Ciudad, G.; Chamy, R.: Nitrification-denitrification via nitrite accumulation for nitrogen removal from wastewaters. Bioresour. Technol. 97, 330–335 (2006).  https://doi.org/10.1016/j.biortech.2005.02.018 CrossRefGoogle Scholar
  18. 18.
    Sri Shalini, S.; Joseph, K.: Nitrogen management in landfill leachate: application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process. Waste Manag. 32, 2385–2400 (2012).  https://doi.org/10.1016/j.wasman.2012.06.006 CrossRefGoogle Scholar
  19. 19.
    Bashir, M.J.K.; Aziz, H.A.; Yusoff, M.S.; Adlan, M.N.: Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin. Desalination 254, 154–161 (2010).  https://doi.org/10.1016/j.desal.2009.12.002 CrossRefGoogle Scholar
  20. 20.
    Hedström, A.: Ion exchange of ammonium in zeolites: a literature review. J. Environ. Eng. 127, 673–681 (2001).  https://doi.org/10.1061/(ASCE)0733-9372(2001)127:8(673) CrossRefGoogle Scholar
  21. 21.
    Zhou, L.; Boyd, C.E.: Total ammonia nitrogen removal from aqueous solutions by the natural zeolite, mordenite: a laboratory test and experimental study. Aquaculture 432, 252–257 (2014).  https://doi.org/10.1016/j.aquaculture.2014.05.019 CrossRefGoogle Scholar
  22. 22.
    Şan, O.; Abali, S.; Hoşten, Ç.: Fabrication of microporous ceramics from ceramic powders of quartz-natural zeolite mixtures. Ceram. Int. 29, 927–931 (2003).  https://doi.org/10.1016/S0272-8842(03)00047-6 CrossRefGoogle Scholar
  23. 23.
    Hosseini, B.; Nourbakhsh, A.A.; Mackenzie, K.J.D.: Magnesiothermal synthesis of nanostructured SiC from natural zeolite (clinoptilolite) and mesoporous carbon CMK-1. Ceram. Int. 41, 8809–8813 (2015).  https://doi.org/10.1016/j.ceramint.2015.03.107 CrossRefGoogle Scholar
  24. 24.
    Bowman, R.S.: Applications of surfactant-modified zeolites to environmental remediation. Microporous Mesoporous Mater. 61, 43–56 (2003).  https://doi.org/10.1016/S1387-1811(03)00354-8 CrossRefGoogle Scholar
  25. 25.
    Karadag, D.; Tok, S.; Akgul, E.; Turan, M.; Ozturk, M.; Demir, A.: Ammonium removal from sanitary landfill leachate using natural Gördes clinoptilolite. J. Hazard. Mater. 153, 60–66 (2008).  https://doi.org/10.1016/j.jhazmat.2007.08.019 CrossRefGoogle Scholar
  26. 26.
    Halim, A.A.; Aziz, H.A.; Johari, M.A.M.; Ariffin, K.S.: Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination 262, 31–35 (2010).  https://doi.org/10.1016/j.desal.2010.05.036 CrossRefGoogle Scholar
  27. 27.
    Ming, D.W.: Quantitative determination of clinoptilolite in soils by a cation-exchange capacity method. Clays Clay Miner. 35, 463–468 (1987).  https://doi.org/10.1346/CCMN.1987.0350607 CrossRefGoogle Scholar
  28. 28.
    Watanabe, Y.; Yamada, H.; Tanaka, J.; Komatsu, Y.; Moriyoshi, Y.: Ammonium ion exchange of synthetic zeolites: the effect of their open-window sizes, pore structures, and cation exchange capacities. Sep. Sci. Technol. 39, 2091–2104 (2004).  https://doi.org/10.1081/SS-120039306 CrossRefGoogle Scholar
  29. 29.
    Wibowo, E.; Rokhmat, M.; Sutisna,; Khairurrijal,; Abdullah, M.: Reduction of seawater salinity by natural zeolite (Clinoptilolite): adsorption isotherms, thermodynamics and kinetics. Desalination 409, 146–156 (2017).  https://doi.org/10.1016/j.desal.2017.01.026 CrossRefGoogle Scholar
  30. 30.
    Adam, M.R.; Matsuura, T.; Othman, M.H.D.; Puteh, M.H.; Pauzan, M.A.B.; Ismail, A.F.; Mustafa, A.; Rahman, M.A.; Jaafar, J.; Abdullah, M.S.: Feasibility study of the hybrid adsorptive hollow fibre ceramic membrane (HFCM) derived from natural zeolite for the removal of ammonia in wastewater. Process. Saf. Environ. Prot. 122, 378–385 (2019).  https://doi.org/10.1016/j.psep.2018.12.003 CrossRefGoogle Scholar
  31. 31.
    Davis, M.E.; Lobo, R.F.: Zeolite and molecular sieve synthesis. Chem. Mater. 4, 756–768 (1992).  https://doi.org/10.1021/cm00022a005 CrossRefGoogle Scholar
  32. 32.
    Rahman, M.B.A.; Chaibakhsh, N.; Basri, M.; Rahman, R.N.Z.R.A.; Salleh, A.B.; Radzi, S.M.: Modeling and optimization of lipase-catalyzed synthesis of dilauryl adipate ester by response surface methodology. J. Chem. Technol. Biotechnol. 85, 1534–1540 (2008).  https://doi.org/10.1002/jctb.1960 CrossRefGoogle Scholar
  33. 33.
    Wong, I.; Tan, Y.C.; Taufiq-Yap, Y.P.; Ramli, Y.H.: An optimization study for transesterification of palm oil using response surface methodology (RSM). Sains Malaysiana 44, 281–290 (2015)CrossRefGoogle Scholar
  34. 34.
    Wahab, R.A.; Basri, M.; Rahman, R.N.Z.R.A.; Salleh, A.B.; Basyaruddin Abdul Rahman, M.; Chaibakhsh, N.; Leow, T.C.: Food biotechnology enzymatic production of a solvent-free menthyl butyrate via response surface methodology catalyzed by a novel thermostable lipase from Geobacillus Zalihae. Biotechnol. Biotechnol. Equip. 28, 1065–1072 (2014).  https://doi.org/10.1080/13102818.2014.978220 CrossRefGoogle Scholar
  35. 35.
    Umar, M.; Aziz, H.A.; Yusoff, M.S.: Assessing the chlorine disinfection of landfill leachate and optimization by response surface methodology (RSM). Desalination 274, 278–283 (2011).  https://doi.org/10.1016/j.desal.2011.02.023 CrossRefGoogle Scholar
  36. 36.
    Wang, Y.-F.; Lin, F.; Pang, W.-Q.: Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite. J. Hazard. Mater. 142, 160–164 (2007).  https://doi.org/10.1016/j.jhazmat.2006.07.074 CrossRefGoogle Scholar
  37. 37.
    Wu, Y.; Chang, C.C.; Guan, C.Y.; Chang, C.C.; Li, J.W.; Chang, C.Y.; Yu, C.P.: Enhanced removal of ammonium from the aqueous solution using a high-gravity rotating packed bed loaded with clinoptilolite. Sep. Purif. Technol. 221, 378–384 (2019).  https://doi.org/10.1016/j.seppur.2019.04.015 CrossRefGoogle Scholar
  38. 38.
    Zorpas, A.A.; Inglezakis, V.; Loizidou, M.; Grigoropoulou, H.: Particle size effects on uptake of heavy metals from sewage sludge compost using natural zeolite clinoptilolite. J. Colloid Interface Sci. 250, 1–4 (2002).  https://doi.org/10.1006/jcis.2002.8246 CrossRefGoogle Scholar
  39. 39.
    Wang, S.; Peng, Y.: Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 156, 11–24 (2010).  https://doi.org/10.1016/j.cej.2009.10.029 CrossRefGoogle Scholar
  40. 40.
    A.P.H. Association, ed., American Public Health Association (APHA): Standard methods for the Examination of Water and Wastewater, 21st ed., Washington, DC (2005)Google Scholar
  41. 41.
    Jensen, W.A.: Response surface methodology: process and product optimization using designed experiments. J. Qual. Technol. 49, 186–188 (2017).  https://doi.org/10.1080/00224065.2017.11917988 CrossRefGoogle Scholar
  42. 42.
    Pekel, L.C.; Ertunc, S.; Zeybek, Z.; Alpbaz, M.: Optimization of electrochemical treatment of textile dye wastewater. Manag. Environ. Qual. Int. J. 24, 452–462 (2013).  https://doi.org/10.1108/MEQ-02-2013-0015 CrossRefGoogle Scholar
  43. 43.
    Mondal, P.; Majumder, C.B.; Mohanty, B.: Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. J. Hazard. Mater. 150, 695–702 (2008).  https://doi.org/10.1016/j.jhazmat.2007.05.040 CrossRefGoogle Scholar
  44. 44.
    Özacar, M.: Adsorption of phosphate from aqueous solution onto alunite. Chemosphere 51, 321–327 (2003).  https://doi.org/10.1016/S0045-6535(02)00847-0 CrossRefGoogle Scholar
  45. 45.
    Sprynskyy, M.; Lebedynets, M.; Terzyk, A.P.; Kowalczyk, P.; Namieśnik, J.; Buszewski, B.: Ammonium sorption from aqueous solutions by the natural zeolite Transcarpathian clinoptilolite studied under dynamic conditions. J. Colloid Interface Sci. 284, 408–415 (2005).  https://doi.org/10.1016/j.jcis.2004.10.058 CrossRefGoogle Scholar
  46. 46.
    Breck, D.W.; Eversole, W.G.; Milton, R.M.; Reed, T.B.; Thomas, T.L.: Crystalline zeolites. I. The properties of a new synthetic zeolite, Type A. J. Am. Chem. Soc. 78, 5963–5972 (1956).  https://doi.org/10.1021/ja01604a001 CrossRefGoogle Scholar
  47. 47.
    Levan, M.D.; Vermeulen, T.: Binary Langmuir and Freundlich isotherms for ideal adsorbed solutions. J. Phys. Chem. 85, 3247–3250 (1981)CrossRefGoogle Scholar
  48. 48.
    Wang, X.S.; Qin, Y.: Equilibrium sorption isotherms for of Cu 2+ on rice bran. Process. Biochem. 40, 677–680 (2005).  https://doi.org/10.1016/j.procbio.2004.01.043 CrossRefGoogle Scholar
  49. 49.
    Alshameri, A.; He, H.; Zhu, J.; Xi, Y.; Zhu, R.; Ma, L.; Tao, Q.: Adsorption of ammonium by different natural clay minerals: characterization, kinetics and adsorption isotherms. Appl. Clay Sci. 159, 83–93 (2018).  https://doi.org/10.1016/j.clay.2017.11.007 CrossRefGoogle Scholar
  50. 50.
    Shaban, M.; Abu Khadra, M.R.; Nasief, F.M.; AbdEl-Salam, H.M.: Removal of ammonia from aqueous solutions, ground water, and wastewater using mechanically activated clinoptilolite and synthetic zeolite-A: kinetic and equilibrium studies. Water. Air Soil Pollut. (2017).  https://doi.org/10.1007/s11270-017-3643-7 CrossRefGoogle Scholar
  51. 51.
    Wasielewski, S.; Rott, E.; Minke, R.; Steinmetz, H.: Evaluation of different clinoptilolite zeolites as adsorbent for ammonium removal from highly concentrated synthetic wastewater. Water (Switzerland) 10, 1–17 (2018).  https://doi.org/10.3390/w10050584 CrossRefGoogle Scholar
  52. 52.
    Martins, T.H.; Souza, T.S.O.; Foresti, E.: Ammonium removal from landfill leachate by clinoptilolite adsorption followed by bioregeneration. J. Environ. Chem. Eng. 5, 63–68 (2017).  https://doi.org/10.1016/j.jece.2016.11.024 CrossRefGoogle Scholar
  53. 53.
    Du, L.; Trinh, X.; Chen, Q.; Wang, C.; Liu, S.; Liu, P.; Zhou, Q.; Xu, D.; Wu, Z.: Effect of clinoptilolite on ammonia emissions in integrated vertical-flow constructed wetlands (IVCWs) treating swine wastewater. Ecol. Eng. 122, 153–158 (2018).  https://doi.org/10.1016/j.ecoleng.2018.07.037 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Environmental Engineering, School of Civil Engineering, Faculty of EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Malaysia-Japan International Institute of Technology (MJIIT)Universiti Teknologi MalaysiaKuala LumpurMalaysia
  3. 3.Advanced Membrane Technology Research Centre (AMTEC)Universiti Teknologi MalaysiaJohor BahruMalaysia
  4. 4.Department of Chemistry, Faculty of ScienceUniversiti Teknologi MalaysiaJohor BahruMalaysia

Personalised recommendations