Advertisement

Sustainable Synthesis of Hierarchically Porous ZSM-5 Zeolite from Iron Ore Tailings Without Secondary Templates

  • Peng Zhang
  • Suqin LiEmail author
  • Changquan Zhang
Research Article - Chemistry
  • 32 Downloads

Abstract

Currently, it is difficult to realize environmentally friendly synthesis of zeolites due to the use of the solvent. Therefore, it is of great importance to realize zeolite synthesis from iron ore tailings (IOTs) by a solvent-free method. In this work, in situ formed zeolite crystals are self-assembled and IOTs are converted into hierarchically porous ZSM-5. After that, the products prepared are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption. The results demonstrate that the samples show well-defined crystallinity and have micro-/mesoporous structures. The BET surface area is estimated to be 319.809 m2 g−1 and the external surface area is 92.693 m2 g−1, which indicate the as-synthesized ZSM-5 is a good hierarchically porous material. This work provides a reference for green synthesis of hierarchically porous ZSM-5 from IOT.

Keywords

Iron ore tailings Hierarchical structure Solvent-free method ZSM-5 

Notes

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Project 51874039), National Science and Technology Major Project (2017ZX07402001) and National Key R&D Program of China (2017YFC0210301). The authors would like to thank Yonghong Tang from Shiyanjia lab for support in the FTIR analysis (www.shiyanjia.com).

References

  1. 1.
    Osinubi, K.J.; Yohanna, P.; Eberemu, A.O.: Cement modification of tropical black clay using iron ore tailings as admixture. Transp. Geotech. 5, 35 (2015)CrossRefGoogle Scholar
  2. 2.
    Jegatheesan, V.; Liow, J.L.; Shu, L.; Kim, S.H.; Visvanathan, C.: The need for global coordination in sustainable development. J. Clean. Prod. 17, 637 (2009)CrossRefGoogle Scholar
  3. 3.
    Wang, C.L.; Ni, W.; Zhang, S.Q.; Wang, W.K.: Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings. Constr. Build. Mater. 104, 109 (2016)CrossRefGoogle Scholar
  4. 4.
    Cele, E.N.; Maboeta, M.: A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: implications for an iron ore mine site remediation. J. Environ. Manag. 165, 167 (2016)CrossRefGoogle Scholar
  5. 5.
    Zhang, C.Q.; Li, S.Q.: Utilization of iron ore tailing for the synthesis of zeolite A by hydrothermal method. J. Mater. Cycles Waste Manag. 20, 1605 (2017)CrossRefGoogle Scholar
  6. 6.
    Khoshbin, R.; Karimzadeh, R.: Synthesis of mesoporous ZSM-5 from rice husk ash with ultrasound assisted alkali-treatment method used in catalytic cracking of light naphtha. Adv. Powder Technol. 28, 1888 (2017)CrossRefGoogle Scholar
  7. 7.
    Nada, F.M.H.; Larsen, S.C.: Insight into seed-assisted template free synthesis of ZSM-5 zeolites. Microporous Mesoporous Mater. 239, 444 (2017)CrossRefGoogle Scholar
  8. 8.
    Zhang, Q.; Hu, S.; Zhang, L.L.; Wu, Z.J.; Gong, Y.J.; Dou, T.: Facile fabrication of mesopore-containing ZSM-5 zeolite from spent zeolite catalyst for methanol to propylene reaction. Green Chem. 16, 77 (2014)CrossRefGoogle Scholar
  9. 9.
    Liu, X.F.; Zhang, S.J.; Wang, R.W.; Zhang, Z.T.; Qiu, S.L.: Sustainable synthesis of hierarchically porous silicalite-1 zeolite by steam-assisted crystallization of solid raw materials without secondary templates. Chem. Res. Chin. Univ. 34, 350 (2018)CrossRefGoogle Scholar
  10. 10.
    Huang, L.M.; Guo, W.P.; Deng, P.; Xue, Z.Y.; Li, Q.Z.: Investigation of synthesizing MCM-41/ZSM-5 composites. J. Phys. Chem. B 104, 2817 (2000)CrossRefGoogle Scholar
  11. 11.
    Yang, S.T.; Yu, C.X.; Yu, L.L.; Miao, S.; Zou, M.M.; Jin, C.Z.; Zhang, D.Z.: Bridging dealumination and desilication for the synthesis of hierarchical MFI zeolites. Angew. Chem. Int. Ed. 56, 1253 (2017)Google Scholar
  12. 12.
    Groen, J.C.; Moulijn, J.A.; Perez-Ramirez, J.: Desilication: on the controlled generation of mesoporosity in MFI zeolites. J. Mater. Chem. 16, 2121 (2006)CrossRefGoogle Scholar
  13. 13.
    Perez-Ramirez, J.; Abello, S.; Bonilla, A.; Groen, J.C.: Tailored mesoporosity development in zeolite crystals by partial detemplation and desilication. Adv. Funct. Mater. 19, 164 (2009)CrossRefGoogle Scholar
  14. 14.
    Chen, H.; Wydra, J.; Zhang, X.; Lee, P.S.; Wang, Z.; Fan, W.; Tsapatsis, M.: Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. J. Am. Chem. Soc. 133, 12390 (2011)CrossRefGoogle Scholar
  15. 15.
    Zhang, B.; Davis, S.A.; Mann, S.: Starch gel templating of spongelike macroporous silicalite monoliths and mesoporous films. Chem. Mater. 14, 1369 (2002)CrossRefGoogle Scholar
  16. 16.
    Chen, L.; Zhu, S.Y.; Wang, Y.M.; He, M.Y.: One-step synthesis of hierarchical pentasil zeolite microspheres using diamine with linear carbon chain as single template. New J. Chem. 34, 2328 (2010)CrossRefGoogle Scholar
  17. 17.
    Fang, Y.M.; Hu, H.Q.: An ordered mesoporous aluminosilicate with completely crystalline zeolite wall structure. J. Am. Chem. Soc. 128, 10636 (2006)CrossRefGoogle Scholar
  18. 18.
    Sun, C.; Du, J.; Liu, J.; Yang, Y.; Ren, N.; Shen, W.; Xu, H.; Tang, Y.: A facile route to synthesize endurable mesopore containing ZSM-5 catalyst for methanol to propylene reaction. Chem. Commun. 46, 2671 (2010)CrossRefGoogle Scholar
  19. 19.
    Liu, Y.; Zhang, W.; Liu, Z.; Xu, S.; Wang, Y.; Xie, Z.; Han, X.; Bao, X.: Direct observation of the mesopores in ZSM-5 zeolites with hierarchical porous structures by laser-hyperpolarized 129Xe NMR. J. Phys. Chem. C 112, 15375 (2008)CrossRefGoogle Scholar
  20. 20.
    Zhang, P.; Wang, L.; Ren, L.; Zhu, L.; Sun, Q.; Zhang, J.; Meng, X.; Xiao, F.S.: “Solvent-free” synthesis of thermally stable and hierarchically porous aluminophosphates (SF-APOs) and heteroatom-substituted aluminophosphates (SF-MAPOs). J. Mater. Chem. 21, 12026 (2011)CrossRefGoogle Scholar
  21. 21.
    Li, C.L.; Wang, Y.Q.; Shi, B.F.; Ren, J.W.; Liu, X.H.; Wang, Y.G.; Guo, Y.; Guo, Y.L.; Lu, G.Z.: Synthesis of hierarchical MFI zeolite microspheres with stacking nanocrystals. Microporous Mesoporous Mater. 117, 104 (2009)CrossRefGoogle Scholar
  22. 22.
    Ren, L.M.; Wu, Q.M.; Yang, C.G.; Zhu, L.F.; Li, C.J.; Zhang, P.L.; Zhang, H.Y.; Meng, X.J.; Xiao, F.S.: Solvent-free synthesis of zeolites from solid raw materials. J. Am. Chem. Soc. 134, 15173 (2012)CrossRefGoogle Scholar
  23. 23.
    Meng, X.; Xiao, F.S.: Green routes for synthesis of zeolites. Chem. Rev. 114, 1521 (2014)CrossRefGoogle Scholar
  24. 24.
    Jin, Y.; Sun, Q.; Qi, G.; Yang, C.; Xu, J.; Chen, F.; Meng, X.; Deng, F.; Xiao, F.S.: Solvent-free synthesis of silicoaluminophosphate zeolites. Angew. Chem. Int. Ed. Engl. 52, 9172 (2013)CrossRefGoogle Scholar
  25. 25.
    Wu, Q.; Wang, X.; Qi, G.; Guo, Q.; Pan, S.; Meng, X.; Xu, J.; Deng, F.; Fan, F.; Feng, Z.; Li, C.; Maurer, S.; Muller, U.; Xiao, F.S.: Sustainable synthesis of zeolites without addition of both organotemplates and solvents. J. Am. Chem. Soc. 136, 4019 (2014)CrossRefGoogle Scholar
  26. 26.
    Wu, Q.; Liu, X.; Zhu, L.; Ding, L.; Gao, P.; Wang, X.; Pan, S.; Bian, C.; Meng, X.; Xu, J.; Deng, F.; Maurer, S.; Muller, U.; Xiao, F.S.: Solvent-free synthesis of zeolites from anhydrous starting raw solids. J. Am. Chem. Soc. 137, 1052 (2014)CrossRefGoogle Scholar
  27. 27.
    Bordo, A.; Bisio, C.; Marchese, L.: An acid solid layered material. Chem. Mater. 19, 4300 (2007)CrossRefGoogle Scholar
  28. 28.
    Kosuge, K.; Tsunashima, A.: Dispersion of H-magadiite and H-kenyaite particles by ion exchange of H+ with alkali ions. Langmuir 12, 1124 (1996)CrossRefGoogle Scholar
  29. 29.
    Mitamura, Y.; Komori, Y.; Hayashi, S.; Sugahara, Y.; Kuroda, K.: Interlamellar esterification of H-magadiite with aliphatic alcohols. Chem. Mater. 13, 3747 (2001)CrossRefGoogle Scholar
  30. 30.
    Pastore, H.O.; Munsignatti, M.; Mascarenhas, A.J.S.: One-step synthesis of alkyltrimethylammonium-intercalated magadiite. Clays Clay Miner. 48, 224 (2000)CrossRefGoogle Scholar
  31. 31.
    Kamimura, Y.; Itabashi, K.J.; Okubo, T.: Seed-assisted, OSDA-free synthesis of MTW-type zeolite and ‘‘Green MTW’’ from sodium aluminosilicate gel systems. Microporous Mesoporous Mater. 147, 149 (2012)CrossRefGoogle Scholar
  32. 32.
    Wu, Q.; Meng, X.J.; Gao, X.H.; Xiao, F.S.: Solvent-free synthesis of zeolites: mechanism and utility. Acc. Chem. Res. 51, 1396 (2018)CrossRefGoogle Scholar
  33. 33.
    Kordatos, K.; Gavela, S.; Ntziouni, A.; Pistiolas, K.N.; Kyritsi, A.; Kasselouri-Rigopoulou, V.: Solvent-free synthesis of zeolites: mechanism and utility. Microporous Mesoporous Mater. 115, 189 (2008)CrossRefGoogle Scholar
  34. 34.
    Liu, H.T.; Guo, K.X.; Li, X.P.; Gao, X.H.; Cao, L.; Chen, Y.M.; Xu, C.Y.: Understanding and direct strategy to synthesize hydrothermally stable micro-mesoporous aluminosilicates with largely enhanced acidity. Microporous Mesoporous Mater. 188, 108 (2014)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations