Advertisement

Automated Detection of Sleep Stages Using Energy-Localized Orthogonal Wavelet Filter Banks

  • Manish SharmaEmail author
  • Sohamkumar Patel
  • Siddhant Choudhary
  • U. Rajendra Acharya
Research Article - Special Issue - Intelligent Computing And Interdisciplinary Applications
  • 26 Downloads

Abstract

Sleep is an integral part of human life which provides the body with much-needed rest which facilitates recovery and promotes health. Sleep disorders, however, lead to a reduced quality of sleep and as a result, affect the standard of human life. It is important to classify sleep stages in order to detect sleep disorders. Electroencephalogram (EEG) signals are obtained from patients under observation. But, classifying these EEG signals into various sleep stages is an arduous task. It becomes more difficult when one tries to classify EEG signals visually. Even sleep specialists struggle to classify the EEG signals into different sleep stages by visual inspection. Several approaches have been adopted by scientists across the world to mitigate these errors by using EEG and polysomnogram signals. In this paper, an automated method has been proposed for scoring various sleep stages employing EEG signals. We have employed a two-band energy-localized filter in the time-frequency domain, which decomposed six sub-bands using five-level wavelet decomposition. Subsequently, we compute discriminatory features namely fuzzy entropy and log energy from the decomposed coefficients. The extracted features are fed to various supervised machine learning classifiers. Our proposed approach yielded an accuracy of 91.5% and 88.5% for six-class classification task using small and large datasets, respectively.

Keywords

Sleep stage EEG Energy localization Supervised machine learning classifiers Wavelet-based features 

References

  1. 1.
    Buxton, O.; Marcelli, E.: Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. Soc. Sci. Med. 71, 1027–1036 (2010).  https://doi.org/10.1016/j.socscimed.2010.05.041 CrossRefGoogle Scholar
  2. 2.
    Hirotsu, C.; Tufik, S.; Andersen, M.: Interactions between sleep, stress, and metabolism: from physiological to pathological conditions. Sleep Sci. (2015).  https://doi.org/10.1016/j.slsci.2015.09.002 CrossRefGoogle Scholar
  3. 3.
    Shrivastava, D.; Jung, S.; Saadat, M.; Sirohi, R.; Crewson, K.: How to interpret the results of a sleep study. J. Community Hosp. Intern. Med. Perspect. 4(5), 24,983 (2014).  https://doi.org/10.3402/jchimp.v4.24983 CrossRefGoogle Scholar
  4. 4.
    Ohayon, M.M.; Ferini-Strambi, L.; Plazzi, G.; Smirne, S.; Castronovo, V.: Frequency of narcolepsy symptoms and other sleep disorders in narcoleptic patients and their first-degree relatives. J. Sleep Res. 14(4), 437–445 (2005).  https://doi.org/10.1111/j.1365-2869.2005.00476.x CrossRefGoogle Scholar
  5. 5.
    Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli, H.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270–278 (2018).  https://doi.org/10.1016/j.compbiomed.2017.09.017 CrossRefGoogle Scholar
  6. 6.
    Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli, H.; Subha, D.P.: Automated EEG-based screening of depression using deep convolutional neural network. Comput. Methods Programs Biomed. 161, 103–113 (2018).  https://doi.org/10.1016/j.cmpb.2018.04.012 CrossRefGoogle Scholar
  7. 7.
    Acharya, U.R.; Vinitha Sree, S.; Swapna, G.; Martis, R.J.; Suri, J.S.: Automated EEG analysis of epilepsy: a review. Knowl. Based Syst. 45, 147–165 (2013).  https://doi.org/10.1016/j.knosys.2013.02.014 CrossRefGoogle Scholar
  8. 8.
    Ahmadlou, M.; Adeli, H.; Adeli, A.: Fractality and a wavelet-chao methodology for EEG-based diagnosis of Alzheimer’s disease. Alzheimer Dis. Assoc. Disord. 25, 85–92 (2010).  https://doi.org/10.1097/WAD.0b013e3181ed1160 CrossRefGoogle Scholar
  9. 9.
    Chen, G.: Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features. Expert Syst. Appl. Int. J. 41, 2391–2394 (2014).  https://doi.org/10.1016/j.eswa.2013.09.037 CrossRefGoogle Scholar
  10. 10.
    Kulkarni, N.; Bairagi, V.: Chapter two—Electroencephalogram and Its Use in Clinical Neuroscience (2018).  https://doi.org/10.1016/B978-0-12-815392-5.00002-2. URL http://www.sciencedirect.com/science/article/pii/B9780128153925000022
  11. 11.
    Lehmann, C.; Koenig, T.; Jelic, V.; Prichep, L.; John, R.E.; Wahlund, L.O.; Dodge, Y.; Dierks, T.: Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG). J. Neurosci. Methods 161(2), 342–350 (2007).  https://doi.org/10.1016/j.jneumeth.2006.10.023 CrossRefGoogle Scholar
  12. 12.
    Michielli, N.; Acharya, U.R.; Molinari, F.: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals. Comput. Biol. Med. 106, 71–81 (2019).  https://doi.org/10.1016/j.compbiomed.2019.01.013 CrossRefGoogle Scholar
  13. 13.
    Oh, S.L.; Hagiwara, Y.; Raghavendra, U.; Yuvaraj, R.; Arunkumar, N.; Murugappan, M.; Acharya, U.R.: A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Comput. Appl. (2018).  https://doi.org/10.1007/s00521-018-3689-5 CrossRefGoogle Scholar
  14. 14.
    Smith, S.J.M.: Eeg in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 76(suppl 2), ii2–ii7 (2005).  https://doi.org/10.1136/jnnp.2005.069245 CrossRefGoogle Scholar
  15. 15.
    Ferreri, F.; Ponzo, D.; Hukkanen, T.; Mervaala, E.; Könönen, M.; Pasqualetti, P.; Vecchio, F.; Rossini, P.M.; Määttä, S.: Human brain cortical correlates of short-latency afferent inhibition: a combined EEG-TMS study. J. Neurophysiol. 108(1), 314–323 (2012)CrossRefGoogle Scholar
  16. 16.
    O’Reilly, C.; Nielsen, T.: Assessing EEG sleep spindle propagation. part 1: theory and proposed methodology. J. Neurosci. Methods 221, 202–214 (2014)CrossRefGoogle Scholar
  17. 17.
    Hassan, A.R.; Bhuiyan, M.I.H.: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating. Biomed. Signal Process. Control 24, 1–10 (2016)CrossRefGoogle Scholar
  18. 18.
    Liang, S.F.; Kuo, C.E.; Hu, Y.H.; Pan, Y.H.; Wang, Y.H.: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models. IEEE Trans. Instrum. Meas. 61(6), 1649–1657 (2012)CrossRefGoogle Scholar
  19. 19.
    Sharma, R.; Pachori, B.R.; Upadhyay, A.: Automatic sleep stages classification based on iterative filtering of electroencephalogram signals. Neural Comput. Appl. 28(10), 2959–2978 (2017) CrossRefGoogle Scholar
  20. 20.
    Zhu, G.; Li, Y.; Wen, P.P.: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal. IEEE J. Biomed. Health Inform. 18(6), 1813–1821 (2014)CrossRefGoogle Scholar
  21. 21.
    Ronzhina, M.; Janoušek, O.; Kolářová, J.; Nováková, M.; Honzík, P.; Provazník, I.: Sleep scoring using artificial neural networks. Sleep Med. Rev. 16(3), 251–263 (2012)CrossRefGoogle Scholar
  22. 22.
    Šušmáková, K.; Krakovská, A.: Discrimination ability of individual measures used in sleep stages classification. Artif. Intell. Med. 44(3), 261–277 (2008)CrossRefGoogle Scholar
  23. 23.
    van Sweden, B.; Kemp, B.; Kamphuisen, H.A.C.; Van der Velde, E.A.: Alternative electrode placement in (automatic) sleep scoring (Fpz-Cz/Pz-Oz versus C4-A1). Sleep 13(3), 279–283 (1990)CrossRefGoogle Scholar
  24. 24.
    Rechtschaffen, A.: A manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. Public Health Service, Washington, D.C. (1968)Google Scholar
  25. 25.
    Iranzo, A.; Santamaria, J.; Tolosa, E.: The clinical and pathophysiological relevance of REM sleep behavior disorder in neurodegenerative diseases. Sleep Med. Rev. 13(6), 385–401 (2009)CrossRefGoogle Scholar
  26. 26.
    Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Marcus, C.; Vaughn, B.: The AASM Manual for the Scoring of Sleep and Associated Events. Rules, Terminology and Technical Specifications. American Academy of Sleep Medicine, Darien (2012)Google Scholar
  27. 27.
    Berthomier, C.; Drouot, X.; Herman-Stoïca, M.; Berthomier, P.; Prado, J.; Bokar-Thire, D.; Benoit, O.; Mattout, J.; d’Ortho, M.P.: Automatic analysis of single-channel sleep EEG: validation in healthy individuals. Sleep 30(11), 1587–1595 (2007)CrossRefGoogle Scholar
  28. 28.
    Hassan, A.R.; Bhuiyan, M.I.H.: A decision support system for automatic sleep staging from EEG signals using tunable \(q\)-factor wavelet transform and spectral features. J. Neurosci. Methods 271, 107–118 (2016)Google Scholar
  29. 29.
    Acharya, U.R.; Chua, E.C.P.; Chua, K.C.; Min, L.C.; Tamura, T.: Analysis and automatic identification of sleep stages using higher order spectra. Int. J. Neural Syst. 20(06), 509–521 (2010)CrossRefGoogle Scholar
  30. 30.
    Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E.: Physiobank, physiotoolkit, and physionet. Circulation 101(23), e215–e220 (2000)CrossRefGoogle Scholar
  31. 31.
    Kemp, B.; Zwinderman, A.H.; Tuk, B.; Kamphuisen, H.A.; Oberye, J.J.: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Trans. Biomed. Eng. 47(9), 1185–1194 (2000)CrossRefGoogle Scholar
  32. 32.
    Mourtazaev, M.S.; Kemp, B.; Zwinderman, A.H.; Kamphuisen, H.A.C.: Age and gender affect different characteristics of slow waves in the sleep EEG. Sleep 18(7), 557–564 (1995)CrossRefGoogle Scholar
  33. 33.
    Tuk, B.; Oberyé, J.J.L.; Pieters, M.S.M.; Schoemaker, R.C.; Kemp, B.; van Gerven, J.; Danhof, M.; Kamphuisen, H.A.C.; Cohen, A.F.; Breimer, D.D.; Peck, C.C.: Pharmacodynamics of temazepam in primary insomnia: assessment of the value of quantitative electroencephalography and saccadic eye movements in predicting improvement of sleep. Clin. Pharmacol. Ther. 62(4), 444–452 (1997)CrossRefGoogle Scholar
  34. 34.
    Correa, M.A.G.; Laciar, E.: Noise removal from EEG, signals in polisomnographic records applying adaptive filters in cascade. In: Adaptive Filtering Applications. InTech (2011).  https://doi.org/10.5772/17219
  35. 35.
    Kosko, B.: Fuzzy entropy and conditioning. Inf. Sci. 40(2), 165–174 (1986).  https://doi.org/10.1016/0020-0255(86)90006-x MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Acharya, U.R.; Hagiwara, Y.; Koh, J.E.W.; Oh, S.L.; Tan, J.H.; Adam, M.; Tan, R.S.: Entropies for automated detection of coronary artery disease using ECG signals: a review. Biocybern. Biomed. Eng. 38(2), 373–384 (2018).  https://doi.org/10.1016/j.bbe.2018.03.001 CrossRefGoogle Scholar
  37. 37.
    Sharma, M.; Agarwal, S.; Acharya, U.R.: Application of an optimal class of antisymmetric wavelet filter banks for obstructive sleep apnea diagnosis using ECG signals. Comput. Biol. Med. 100, 100–113 (2018).  https://doi.org/10.1016/j.compbiomed.2018.06.011 CrossRefGoogle Scholar
  38. 38.
    Sharma, M.; Acharya, U.R.: A new method to identify coronary artery disease with ecg signals and time-frequency concentrated antisymmetric biorthogonal wavelet filter bank. Pattern Recognit. Lett. 125, 235–240 (2019).  https://doi.org/10.1016/j.patrec.2019.04.014 CrossRefGoogle Scholar
  39. 39.
    Sharma, M.; Shah, S.: A novel approach for epilepsy detection using time-frequency localized bi-orthogonal wavelet filter. J. Mech. Med. Biol. 19, 1940007 (2019) CrossRefGoogle Scholar
  40. 40.
    Sharma, M.; Tan, R.S.; Acharya, U.R.: Detection of shockable ventricular arrhythmia using optimal orthogonal wavelet filters. Neural Comput. Appl. (2019).  https://doi.org/10.1007/s00521-019-04061-8 CrossRefGoogle Scholar
  41. 41.
    Sharma, M.; Achuth, P.; Deb, D.; Puthankattil, S.D.; Acharya, U.R.: An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with EEG signals. Cogn. Syst. Res. 52, 508–520 (2018)CrossRefGoogle Scholar
  42. 42.
    Sharma, M.; Raval, M.; Acharya, U.R.: A new approach to identify obstructive sleep apnea using an optimal orthogonal wavelet filter bank with ECG signals. Inform. Med. Unlocked (2019).  https://doi.org/10.1016/j.imu.2019.100170 CrossRefGoogle Scholar
  43. 43.
    Bhurane, A.A.; Sharma, M.; San-Tan, R.; Acharya, U.R.: An efficient detection of congestive heart failure using frequency localized filter banks for the diagnosis with ECG signals. Cogn. Syst. Res. (2019).  https://doi.org/10.1016/j.cogsys.2018.12.017 CrossRefGoogle Scholar
  44. 44.
    Sharma, M.; Acharya, U.R.: Analysis of knee-joint vibroarthographic signals using bandwidth-duration localized three-channel filter bank. Comput. Electr. Eng. 72, 191–202 (2018).  https://doi.org/10.1016/j.compeleceng.2018.08.019 CrossRefGoogle Scholar
  45. 45.
    Sharma, M.; Tan, R.S.; Acharya, U.R.: A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank. Comput. Biol. Med. (2018).  https://doi.org/10.1016/j.compbiomed.2018.07.005 CrossRefGoogle Scholar
  46. 46.
    Sharma, M.; Pachori, R.B.; Acharya, U.R.: A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recognit. Lett. 94, 172–179 (2017).  https://doi.org/10.1016/j.patrec.2017.03.023 CrossRefGoogle Scholar
  47. 47.
    Sharma, M.; Sharma, P.; Pachori, R.B.; Acharya, U.R.: Dual-tree complex wavelet transform-based features for automated alcoholism identification. Int. J. Fuzzy Syst. 20(4), 1297–1308 (2018).  https://doi.org/10.1007/s40815-018-0455-x CrossRefGoogle Scholar
  48. 48.
    Sharma, M.; Achuth, P.V.; Pachori, R.B.; Gadre, V.M.: A parametrization technique to design joint time-frequency optimized discrete-time biorthogonal wavelet bases. Signal Process. 135, 107–120 (2017)CrossRefGoogle Scholar
  49. 49.
    Sharma, M.; Dhere, A.; Pachori, R.B.; Gadre, V.M.: Optimal duration-bandwidth localized antisymmetric biorthogonal wavelet filters. Signal Process. 134, 87–99 (2017)CrossRefGoogle Scholar
  50. 50.
    Jaffar Iqbal Barbhuiya, A.H.M.; Hemachandran, K.: Wavelet tranformations & its major applications in digital image processing. Int. J. Eng. Res. Technol. (IJERT) 2, 5 (2013)Google Scholar
  51. 51.
    Sharma, M.; Deb, D.; Acharya, U.R.: A novel three-band orthogonal wavelet filter bank method for an automated identification of alcoholic EEG signals. Appl. Intell. 48(5), 1368–1378 (2018).  https://doi.org/10.1007/s10489-017-1042-9 CrossRefGoogle Scholar
  52. 52.
    Sharma, M.; Dhere, A.; Pachori, R.B.; Acharya, U.R.: An automatic detection of focal EEG signals using new class of time-frequency localized orthogonal wavelet filter banks. Knowl Based Syst. 118, 217–227 (2017)CrossRefGoogle Scholar
  53. 53.
    Sharma, M.; Gadre, V.M.; Porwal, S.: An eigenfilter-based approach to the design of time-frequency localization optimized two-channel linear phase biorthogonal filter banks. Circuits Syst. Signal Process. 34(3), 931–959 (2015)CrossRefGoogle Scholar
  54. 54.
    Guo, L.; Rivero, D.; Dorado, J.; Rabunal, J.R.; Pazos, A.: Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. J. Neurosci. Methods 191(1), 101–109 (2010)CrossRefGoogle Scholar
  55. 55.
    Kalayci, T.; Ozdamar, O.: Wavelet preprocessing for automated neural network detection of EEG spikes. IEEE Eng. Med. Biol. Mag. 14(2), 160–166 (1995)CrossRefGoogle Scholar
  56. 56.
    Subasi, A.: Epileptic seizure detection using dynamic wavelet network. Expert Syst. Appl. 29(2), 343–355 (2005).  https://doi.org/10.1016/j.eswa.2005.04.007 CrossRefGoogle Scholar
  57. 57.
    Friedman, J.H.; Bentley, J.L.; Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. (TOMS) 3(3), 209–226 (1977)CrossRefGoogle Scholar
  58. 58.
    Cortes, C.; Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  59. 59.
    Suykens, J.A.K.; Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)CrossRefGoogle Scholar
  60. 60.
    Vapnik, V.: The Nature of Statistical Learning Theory (1995)Google Scholar
  61. 61.
    Griner, P.F.; Mayewski, R.J.; Mushlin, A.I.; Greenland, P.: Selection and interpretation of diagnostic tests and procedures. Ann. Intern. Med. 94(4 II), 557–592 (1981) Google Scholar
  62. 62.
    Kıymık, M.; Güler, İ.; Dizibüyük, A.; Akın, M.: Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application. Comput. Biol. Med. 35(7), 603–616 (2005).  https://doi.org/10.1016/j.compbiomed.2004.05.001 CrossRefGoogle Scholar
  63. 63.
    Sharma, M.; Goyal, D.; Achuth, P.; Acharya, U.R.: An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank. Comput. Biol. Med. 98, 58–75 (2018).  https://doi.org/10.1016/j.compbiomed.2018.04.025 CrossRefGoogle Scholar
  64. 64.
    Sharma, M.; Tan, R.S.; Acharya, U.R.: Automated heartbeat classification and detection of arrhythmia using optimal orthogonal wavelet filters. Inform. Med. Unlocked 16, 100170 (2019)CrossRefGoogle Scholar
  65. 65.
    Karmakar, A.; Kumar, A.; Patney, R.: Design of an optimal two-channel orthogonal filterbank using semidefinite programming. IEEE Signal Process. Lett. 14, 692–694 (2007).  https://doi.org/10.1109/LSP.2007.896419 CrossRefGoogle Scholar
  66. 66.
    Sharma, M.; Bhati, D.; Pillai, S.; Pachori, R.B.; Gadre, V.M.: Design of time-frequency localized filter banks: transforming non-convex problem into convex via semidefinite relaxation technique. Circuits Syst. Signal Process. 35(10), 3716–3733 (2016)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Sharma, M.; Bhurane, A.A.; Acharya, U.R.: MMSFL-OWFB: a novel class of orthogonal wavelet filters for epileptic seizure detection. Knowl Based Syst. 160, 265–277 (2018).  https://doi.org/10.1016/j.knosys.2018.07.019 CrossRefGoogle Scholar
  68. 68.
    Toh, K.C.; Todd, M.; Tütüncü, R.; Tutuncu, R.H.: Sdpt3—a matlab software package for semidefinite programming. Optim. Methods Softw. 11, 545–581 (1998)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Hassan, A.R.; Bashar, S.K.; Bhuiyan, M.I.H.: On the classification of sleep states by means of statistical and spectral features from single channel electroencephalogram. In: 2015 International Conference on Advances in Computing, communications and Informatics (ICACCI), pp. 2238–2243. IEEE (2015).  https://doi.org/10.1109/icacci.2015.7275950
  70. 70.
    Huang, C.S.; Lin, C.L.; Ko, L.W.; Liu, S.Y.; Sua, T.P.; Lin, C.T.: A hierarchical classification system for sleep stage scoring via forehead EEG signals. In: 2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), pp. 1–5. IEEE (2013).  https://doi.org/10.1109/CCMB.2013.6609157
  71. 71.
    Hassan, A.R.; Bhuiyan, M.I.H.: Automatic sleep stage classification. In: 2015 2nd International Conference on Electrical Information and Communication Technology (EICT), pp. 211–216. IEEE (2015).  https://doi.org/10.1109/EICT.2015.7391948
  72. 72.
    Hassan, A.R.; Bashar, S.K.; Bhuiyan, M.I.H.: Automatic classification of sleep stages from single-channel electroencephalogram. In: 2015 Annual IEEE India Conference (INDICON), pp. 1–6. IEEE (2015).  https://doi.org/10.1109/INDICON.2015.7443756
  73. 73.
    Mousavi, S.; Afghah, F.; Acharya, U.R.: SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach. PLoS ONE (2019).  https://doi.org/10.1371/journal.pone.0216456 CrossRefGoogle Scholar
  74. 74.
    Yildirim, O.; Baloglu, U.; Acharya, U.: A deep learning model for automated sleep stages classification using PSG signals. Int. J. Environ. Res. Public Health 16(4), 599 (2019).  https://doi.org/10.3390/ijerph16040599 CrossRefGoogle Scholar
  75. 75.
    Faust, O.; Hagiwara, Y.; Tan, J.H.; Oh, S.L.; Acharya, U.R.: Deep learning for healthcare applications based on physiological signals: a review. Comput. Methods Programs Biomed. (2018).  https://doi.org/10.1016/j.cmpb.2018.04.005 CrossRefGoogle Scholar
  76. 76.
    Oh, S.L.; Ng, E.; Tan, R.S.; Acharya, U.R.: Automated diagnosis of arrhythmia using combination of cnn and LSTM techniques with variable length heart beats. Comput. Biol. Med. (2018).  https://doi.org/10.1016/j.compbiomed.2018.06.002 CrossRefGoogle Scholar
  77. 77.
    Tan, J.H.; Hagiwara, Y.; Pang, W.; Lim, I.; Oh, S.L.; Adam, M.; Tan, R.S.; Chen, M.; Acharya, U.R.: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Comput. Biol. Med. (2018).  https://doi.org/10.1016/j.compbiomed.2017.12.023 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  • Manish Sharma
    • 1
    Email author
  • Sohamkumar Patel
    • 1
  • Siddhant Choudhary
    • 1
  • U. Rajendra Acharya
    • 2
    • 3
    • 4
  1. 1.Department of Electrical EngineeringInstitute of Infrastructure, Technology, Research and Management (IITRAM)AhmedabadIndia
  2. 2.Department of Electronics and Computer EngineeringNgee Ann Polytechnic, SingaporeClementiSingapore
  3. 3.Department of Biomedical Engineering, School of Science and TechnologySUSS UniversityClementiSingapore
  4. 4.Department of Biomedical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations