The Nonlinear Instability of a Cylindrical Interface Between Two Hydromagnetic Darcian Flows

  • Galal M. Moatimid
  • Yusry O. El-Dib
  • Marwa H. ZekryEmail author
Research Article - Physics


This paper investigates the nonlinear instability of an interface between two magnetic fluids separated by a cylindrical interface in porous media. The system is influenced by a uniform axial magnetic field. The magnetic field intensities allow a presence of surface currents at the interface. The transfer of mass and heat across the interface is considered. The solutions of linearized equations of motion, under the appropriate nonlinear boundary conditions, lead to a nonlinear characteristic equation that is governed the behavior of the interface deflection. Drawing on the linear stability theory, Routh–Hurwitz’s criteria are utilized to judge the stability criteria. The coupling of Laplace transforms and Homotopy perturbation techniques are adopted to obtain an approximate analytical solution of the interface profile. The nonlinear stability analysis resulted in two levels of solvability conditions. By means of these conditions, a Ginzburg–Landau equation is conducted. The latter equation represented the nonlinear stability configuration. The magnetic field intensity was plotted versus the wave number of the surface waves. Therefore, the stability picture was divided into stable and as well as unstable regions. Subsequently, the influence of the various physical parameters was addressed.


Nonlinear stability analysis Magnetic fluids Porous media Mass and heat transfer Laplace transforms Homotopy perturbation method 


  1. 1.
    Rosensweig, R.E.: Ferrohydrodynamics. Cambridge University Press, Cambridge (1985)Google Scholar
  2. 2.
    Lübbe, A.S.; Alexiou, C.; Bergemann, C.: Clinical applications of magnetic drug targeting. J. Surg. Res. 95, 200–206 (2001)CrossRefGoogle Scholar
  3. 3.
    Elhefnawy, A.R.E.; Moatimid, G.M.: Nonlinear dynamics and stability of two streaming magnetic fluids. Chaos Solitons Fractals 12, 1207–1216 (2001)CrossRefGoogle Scholar
  4. 4.
    Yecko, P.: Stability of layered channel flow of magnetic fluids. Phys. Fluids 21, 034102 (2009)CrossRefGoogle Scholar
  5. 5.
    Rheinländer, T.; Kötitz, R.; Weitschies, W.; Semmler, W.: Magnetic fluids: biomedical applications and magnetic fractionation. Magn. Electr. Separ. 10, 179–199 (2000)CrossRefGoogle Scholar
  6. 6.
    El-Dib, Y.O.; Mady, A.A.: Nonlinear stability of rotating two superposed magnetized fluids with the homotopy perturbation technique. JCAMEH 49(2), 261–273 (2018)Google Scholar
  7. 7.
    Lakehal, D.; Meier, M.; Fulgosi, M.: Interface tracking towards the direct simulation of heat and mass transfer in multiphase flows. Int. J. Heat Fluid Flow 23, 242–257 (2002)CrossRefGoogle Scholar
  8. 8.
    Hsieh, D.Y.: Effect of heat and mass transfer on Rayleigh–Taylor instability. J. Basic Eng. 94D, 156–160 (1972)CrossRefGoogle Scholar
  9. 9.
    Hsieh, D.Y.: Interfacial stability with mass and heat transfer. Phys. Fluids 21, 745–748 (1978)CrossRefGoogle Scholar
  10. 10.
    Tiwari, D.K.; Awasthi, M.K.; Agrawal, G.S.: Viscous potential flow analysis of magnetohydrodynamic capillary instability with heat and mass transfer. Ain Shams Eng. J. 6(3), 1113–1120 (2015)CrossRefGoogle Scholar
  11. 11.
    Awasthi, M.K.; Asthana, R.; Agrawal, G.S.: Viscous corrections for the viscous potential flow analysis of magnetohydrodynamic Kelvin–Helmholtz instability with heat and mass transfer. Eur. Phys. J. A 48, 174 (2012). CrossRefGoogle Scholar
  12. 12.
    Awasthi, M.K.: Three-dimensional magnetohydrodynamic Kelvin–Helmholtz instability of cylindrical flow with permeable boundaries. Phys. Plasmas 21, 032124 (2014)CrossRefGoogle Scholar
  13. 13.
    Moatimid, G.M.: On the stability of two rigidly rotating magnetic fluid columns in zero gravity in the presence of mass and heat transfer. J. Colloid Interface Sci. 250, 108–120 (2002)CrossRefGoogle Scholar
  14. 14.
    Lee, D.S.: Nonlinear stability in magnetic fluids of cylindrical interface with mass and heat transfer. Eur. Phys. J. B 28, 495–503 (2002)CrossRefGoogle Scholar
  15. 15.
    El-Sayed, M.F.; Moatimid, G.M.; Metwaly, T.M.N.: Three dimensional nonlinear instability analysis of electroconvective finite dielectric fluids. Int. J. Pure Appl. Math. 118(4), 895–920 (2018)Google Scholar
  16. 16.
    Sondergeld, C.H.; Turcotte, D.L.: An experimental study of two-phase convection in a porous medium with applications to geological problems. J. Geophys. Res. 82, 2045–2053 (1977)CrossRefGoogle Scholar
  17. 17.
    Bau, H.H.: Kelvin–Helmholtz instability for parallel flow in porous media: a linear theory. Phys. Fluids 25(10), 1719–1722 (1982)CrossRefGoogle Scholar
  18. 18.
    Zakaria, K.; Sirwah, M.A.; Alkharashi, S.A.: Temporal stability of superposed magnetic fluids in porous media. Phys. Scr. 77, 1–20 (2008)CrossRefGoogle Scholar
  19. 19.
    Obied Allah, M.H.: Viscous potential flow analysis of electrified miscible finitely conducting fluid through porous media. Phys. Plasmas 20, 042104 (2013)CrossRefGoogle Scholar
  20. 20.
    Moatimid, G.M.; El-Dib, Y.O.; Zekry, M.H.: Stability analysis using multiple scales homotopy approach of coupled cylindrical interfaces under the influence of periodic electrostatic fields. Chin. J. Phys. 56, 2507–2522 (2018)CrossRefGoogle Scholar
  21. 21.
    Moatimid, G.M.; El-Dib, Y.O.; Zekry, M.H.: Instability analysis of a streaming electrified cylindrical sheet through porous media. Pramana J. Phys. 92, 22 (2019)CrossRefGoogle Scholar
  22. 22.
    He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999)MathSciNetCrossRefGoogle Scholar
  23. 23.
    He, J.H.: A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-Linear Mech. 35(1), 37–43 (2000)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sajid, M.; Hayat, T.; Asghar, S.: Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt. Nonlinear Dyn. 50, 27–35 (2007)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Biazar, J.; Ghazvini, H.: Convergence of the homotopy perturbation method for partial differential equations. Nonlinear Anal. Real World Appl. 10, 2633–2640 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ayati, Z.; Biazar, J.: On the convergence of Homotopy perturbation method. J. Egypt. Math. Soc. 23, 424–428 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    El-Dib, Y.O.; Moatimid, G.M.: On the coupling of the homotopy perturbation and Frobeninus method for exact solutions of singular nonlinear differential equations. Nonlinear Sci. Lett. A 9(3), 220–230 (2018)Google Scholar
  28. 28.
    Moatimid, G.M.: Non-linear electrorheological instability of two streaming cylindrical fluids. J. Phys. A Math. Gen. 36, 11343–11365 (2003)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Chandrasekhar, S.: Hydrodynamic and Hydrodynamic Stability. Oxford University Press, Oxford (1961)zbMATHGoogle Scholar
  30. 30.
    El-Sayed, M.F.; Moatimid, G.M.; Metwaly, T.M.N.: Nonlinear electrohydrodynamic stability of two superposed streaming finite dielectric fluids in porous medium with interfacial surface charges. Transp. Porous Media 86, 559–578 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Melcher, J.R.: Field Coupled Surface Waves. MIT Press, Cambridge (1963)Google Scholar
  32. 32.
    Zahreddin, Z.; El-Shehawey, E.F.: On the stability of system of differential equations with complex coefficients. Indian J. Pure Appl. Math. 19(10), 963–972 (1988)MathSciNetGoogle Scholar
  33. 33.
    El-Dib, Y.O.; Moatimid, G.M.: Stability configuration of a rocking rod over a circular surface using the homotopy perturbation method and Laplace transform. Arab. J. Sci. Eng. 44, 6581–6591 (2019)CrossRefGoogle Scholar
  34. 34.
    Tripathi, R.; Mishra, H.K.: Homotopy perturbation method with Laplace transform (LT-HPM) for solving Lane–Emden type differential equations (LETDEs). Springer Plus 2016, 1–21 (2016)Google Scholar
  35. 35.
    Moatimid, G.M.; El-Dib, Y.O.: Nonlinear Kelvin–Helmholtz instability of Oldroydian viscoelastic fluid in porous media. Phys. A 333, 41–64 (2004)CrossRefGoogle Scholar
  36. 36.
    Moatimid, G.M.: Nonlinear Kelvin–Helmholtz instability of two miscible ferrofluids in porous media. ZAMP 57, 133–159 (2006)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Lange, C.G.; Newell, A.C.: A stability criterion for envelope equation. SIAM J. Appl. Math. 27(3), 441–456 (1974)MathSciNetCrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of EducationAin Shams UniversityRoxy, CairoEgypt
  2. 2.Department of Mathematics and Computer Science, Faculty of ScienceBeni-Suef UniversityBeni SuefEgypt

Personalised recommendations