Skip to main content
Log in

Experimental Analysis and Numerical Modeling of Polymer Flooding in Heavy Oil Recovery Enhancement: A Pore-Level Investigation

  • Research Article - Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study provides new insights into pore-scale displacement events during the simultaneous flow of a low-molecular-weight polymer solution and heavy oil through porous media. Rheological measurements were taken to examine the viscosifying ability of the utilized polymer. The efficiency of the employed solutions in enhancing heavy oil recovery was also investigated using a pore network micromodel. Both macroscopic and microscopic sweep efficiencies were evaluated by analyzing high-resolution pictures continuously captured during the multiphase flow experiments. The rheological measurements revealed that viscosity of the polymer solution is more sensitive to increasing polymer concentration than salinity. Oil recovery experiments disclosed that polymer flooding could yield a recovery factor of about 58% of original oil in-place (OOIP), while the ultimate recovery factor for water flooding is only 35% of OOIP. The macroscopic observations proved that dwindling the formation of viscous fingers during polymer flooding is one of the main responsible factors for the significant improvement of heavy oil recovery. Moreover, the microscopic observations unveiled the noticeable effect of the polymer solution on the enhancement of microscopic sweep efficiency and showed that pulling effects and stripping mechanisms are effective in reducing the saturation of heavy oil at dead ends and pore walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(\tau_{\text{o}}\) :

Yield stress (Pa)

\(\tau\) :

Shear stress (Pa)

\(\dot{\gamma }\) :

Shear rate (1/s)

\(\mu_{\text{p}}\) :

Polymer viscosity (cp)

\(\mu_{\text{w}}\) :

Water viscosity (cp)

\(\mu_{\text{p}}^{0}\) :

Polymer viscosity at zero shear rate (cp)

\(\dot{\gamma }_{1/2}\) :

Shear rate at which polymer viscosity is one half polymer viscosity at zero shear rate (1/s)

β p :

Parameter used to increase the strength of the divalent cation concentration

\(\mu_{\infty }\) :

Infinite shear viscosity in Carreau model (cp)

\(\mu_{0}\) :

Zero shear viscosity in Carreau model (cp)

λ :

Time-dependent parameter in Carreau model (s)

AD41:

The matching parameter for the UTCHEM adsorption model

AD42:

The matching parameter for the UTCHEM adsorption model

AP1:

The matching parameter for the UTCHEM viscosity model

AP2:

The matching parameter for the UTCHEM viscosity model

AP3:

The matching parameter for the UTCHEM viscosity model

C 11 :

Water concentration in the aqueous phase (vol%)

C 51 :

Anion concentration in the aqueous phase (meq/ml)

C 61 :

Cation concentration in the aqueous phase (meq/ml)

C4Ɩ:

Polymer concentration in the aqueous phase (wt%)

\(C_{\text{SEP}}^{\text{Sp}}\) :

The parameter allows for dependence of polymer viscosity on salinity and hardness

GAMMAC:

The matching parameter for shear viscosity model of UTCHEM

GAMHF:

The matching parameter for shear viscosity model of UTCHEM

K :

Consistency coefficient

n :

Flow behavior index

POWN, (Pα):

The matching parameter for shear viscosity model of UTCHEM

SSLOPE:

The parameter for salinity dependence of polymer viscosity in UTCHEM

CEOR:

Chemical enhanced oil recovery

EOR:

Enhanced oil recovery

XG:

Xanthan Gum

TVP:

Thermo-viscosyfing polymer

HPAM:

Hydrolyzed polyacrylamide polymer

PAM:

Polyacrylamide

UTCHEM:

The University of Texas Chemical Compositional Simulator

PVI:

Pore volumes injected

OOIP:

Original oil in-place

BT:

Breakthrough time

REV:

Representative elementary volume

References

  1. Khalilinezhad, S.Sh; Cheraghian, G.; Karambeigi, M.S.; Tabatabaee, H.; Roayaei, E.: Characterizing the role of clay and silica nanoparticles in enhanced heavy oil recovery during polymer flooding. Arab. J. Sci. Eng. 41(7), 2731–2750 (2016). https://doi.org/10.1007/s13369-016-2183-6

    Article  Google Scholar 

  2. Mobaraki, S.; Zakavi, M.; Mahmoodi, O.; Omidvar Sorkhabadi, M.; Khalilinezhad, S.Sh; Shiri Torkmani, R.: An experimental study on the mechanisms of enhancing oil recovery by nanoparticles-assisted surfactant flood. Geosyst. Eng. (2018). https://doi.org/10.1080/12269328.2018.1515670 (Preprint)

    Article  Google Scholar 

  3. Cheraghian, G.; Khalilinezhad, S.Sh: Improvement of heavy oil recovery and role of nanoparticles of clay in the surfactant flooding. Pet. Sci. Technol. 34(15), 1397–1405 (2016). https://doi.org/10.1080/10916466.2016.1198805

    Article  Google Scholar 

  4. Meyer, R.F.; Attanasi, E.D.; Freeman, P.A.: Heavy oil and natural bitumen resources in geological basins of the world. US geological survey, https://pubs.usgs.gov/of/2007/1084/ (2007). Accessed 07 December 2016

  5. Guo, K.; Li, H.; Yu, Zh: In-situ heavy and extra-heavy oil recovery: a review. Fuel 185, 886–902 (2016). https://doi.org/10.1016/j.fuel.2016.08.047

    Article  Google Scholar 

  6. Luo, H.; Delshad, M.; Pope, G.A.; Mohanty, K.K.: Scaling up the interplay of fingering and channeling for unstable water/polymer floods in viscous-oil reservoirs. J. Pet. Sci. Eng. 165, 332–346 (2018). https://doi.org/10.1016/j.petrol.2018.02.035

    Article  Google Scholar 

  7. Al-Shalabi, E.W.; Ghosh, B.: Flow visualization of fingering phenomenon and its impact on waterflood oil recovery. J. Pet. Explor. Prod. Technol. 8(1), 217–228 (2018). https://doi.org/10.1007/s13202-017-0336-0

    Article  Google Scholar 

  8. Doorwar, Sh.; Mohanty, K.K.: Viscous fingering during non-thermal heavy oil recovery. In: Paper SPE 146841 Presented at the SPE Annual Conference and Exhibition, Denver, Colorado, USA (2011). https://doi.org/10.2118/146841-MS

  9. Delamaide, E.; Bazin, B.; Rosseau, D.; Degre, G.: Chemical EOR for heavy oil: the Canadian experience. In: Paper SPE 169715, Presented at the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman (2014). https://doi.org/10.2118/169715-MS

  10. Zhang, H.; Chen, G.; Dong, M.; Zhao, S.; Liang, Zh.: Evaluation of different factors on enhanced oil recovery of heavy oil using different alkali solutions. Energy Fuels 30(5), 3860–3869 (2016). https://doi.org/10.1021/acs.energyfuels.6b00196

    Article  Google Scholar 

  11. Al-Saadi, F.S.; Al-Amri, B.A.; Al Nofli, S.M.; Van Wunnik, J.N.M.; Jaspers, H.F.; Al Harthi, S.; Shuaili, Kh.; Cherukupalli, P.K.; Chakravarthi, R.: Polymer flooding in a large field in South Oman–initial results and future plans. In: Paper SPE 154665, Presented at the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman (2012). https://doi.org/10.2118/154665-MS

  12. Li, Zh.; Delshad, M.; Lotfollahi, M.; Koh, H.; Luo, H.; Chang, H.L.; Zhang, J.; Dempsey, P.; Lucas-Clements, Ch.; Brennan, B.: Polymer flooding of a heavy oil reservoir with an active aquifer. In Paper SPE 169149, Presented at the SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA (2014). https://doi.org/10.2118/169149-MS

  13. Standnes, D.Ch.; Skjevrak, I.: Literature review of implemented polymer flood. J. Pet. Sci. Eng. 122, 761–775 (2014). https://doi.org/10.1016/j.petrol.2014.08.024

    Article  Google Scholar 

  14. Luo, H.; Li, Zh.; Tagavifar, M.; Lashgari, H.R.; Zhao, B.; Delshad, M.; Pope, G.A.; Mohanty, K.K.: Modeling polymer flooding with crossflow in layered reservoirs considering viscous fingering. In: Paper SPE 185017, Presented at the SPE Canada Heavy Oil Technical Conference, Calgary, Alberta, Canada (2017). https://doi.org/10.2118/185017-MS

  15. Yadali Jamaloei, B.; Kharrat, R.; Torabi, F.: A mechanistic analysis of viscous fingering in low-tension polymer flooding in heavy-oil reservoirs. J. Pet. Sci. Eng. 78(2), 228–232 (2011). https://doi.org/10.1016/j.petrol.2011.07.011

    Article  Google Scholar 

  16. Abdul Hamid, S.A.; Muggeridge, A.H.: Analytical solution of polymer slug injection with viscous fingering. Computat Geosci. 22(3), 711–723 (2018). https://doi.org/10.1007/s10596-018-9721-0

    Article  MathSciNet  MATH  Google Scholar 

  17. Van Krevelen, D.W.; Nijenhuis, K.Te: Rheological properties of polymer solutions. In: Van Krevelen, D.W., Nijenhuis, K.Te (eds.) Properties of Polymers, pp. 259–644. Elsevier, Amsterdam (2009)

    Google Scholar 

  18. Jung, J.Ch; Zhang, K.; Chon, B.H.; Choi, H.J.: Rheology and polymer flooding characteristics of partially hydrolyzed polyacrylamide for enhanced heavy oil recovery. J. Appl. Polym. Sci. 127(6), 4833–4839 (2012). https://doi.org/10.1002/app.38070

    Article  Google Scholar 

  19. Jang, H.Y.; Jang, K.; Chon, B.H.; Choi, H.J.: Enhanced oil recovery performance and viscosity characteristics of polysaccharide Xanthan Gum solution. J. Ind. Eng. Chem. 21, 741–745 (2015). https://doi.org/10.1016/j.jiec.2014.04.005

    Article  Google Scholar 

  20. Sarsenbekuly, B.; Kang, W.; Yang, H.; Zhao, B.; Aidarova, S.; Yu, B.; Issakhov, M.: Evaluation of rheological properties of a novel thermo-viscosifying functional polymer for enhanced oil recovery. Colloid Surface. A 532, 405–410 (2017). https://doi.org/10.1016/j.colsurfa.2017.04.053

    Article  Google Scholar 

  21. Ball, J.T.; Pitts, M.J.: Effect of varying polyacrylamide molecular weight on tertiary oil recovery from porous media of varying permeability. In: Paper SPE 12650, Presented at the SPE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, USA (1984). https://doi.org/10.2118/12650-MS

  22. Yin, H.; Wang, D.; Zhong, H.: Study on flow behaviors of viscoelastic polymer solution in micropore with dead end. In: Paper SPE 101950, Presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA (2006). https://doi.org/10.2118/101950-MS

  23. Zhang, L.-J.; Yue, X.-A.: Displacement of polymer solution on residual oil trapped in deadends. J. Cent. South Univ. 15(1), 84–87 (2008). https://doi.org/10.1007/s11771-008-0320-4

    Article  MathSciNet  Google Scholar 

  24. Azad, M.S.; Trivedi, J.J.: Quantification of the viscoelastic effects during polymer flooding: a critical review. SPE J. (2019). https://doi.org/10.2118/195687-PA (Preprint)

    Article  Google Scholar 

  25. Wang, D.; Xia, H.; Liu, Zh.; Yang, Q.: Study of the mechanisms of polymer solution with visco-elastic behavior increasing microscopic oil displacement efficiency and forming of steady ‘oil thread’ flow channels. In: Paper SPE 68723, Presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia (2001). https://doi.org/10.2118/68723-MS

  26. Veerabhadrappa, S.K.; Doda, A.; Trivedi, J.J.; Kuru, E.: On the effect of polymer elasticity on secondary and tertiary oil recovery. Ind. Eng. Chem. Res. 52(51), 18421–18428 (2013). https://doi.org/10.1021/ie4026456

    Article  Google Scholar 

  27. Veerabhadrappa, S.K.; Trivedi, J.J.; Kuru, E.: Visual confirmation of the elasticity dependence of unstable polymer floods. Ind. Eng. Chem. Res. 52(18), 6234–6241 (2013). https://doi.org/10.1021/ie303241b

    Article  Google Scholar 

  28. Doda, A.; Sahib, M.A.; Trivedi, J.J.: Effect of water saturation on the role of polymer elasticity during heavy oil recovery. J. Dispersion Sci. Technol. (2016). https://doi.org/10.1080/01932691.2016.1188710 (Preprint)

    Article  Google Scholar 

  29. Khalilinezhad, S.Sh; Cheraghian, G.: Mechanisms behind Injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery. Appl. Nanosci. 6(6), 923–931 (2016). https://doi.org/10.1007/s13204-015-0500-0

    Article  Google Scholar 

  30. Khalilinezhad, S.Sh; Cheraghian, G.; Roayaei, E.; Tabatabaee, H.; Karambeigi, M.S.: Improving heavy oil recovery in the polymer flooding process by utilizing hydrophilic silica nanoparticles. Energy Sources Part A (2017). https://doi.org/10.1080/15567036.2017.1302521 (Preprint)

    Article  Google Scholar 

  31. Cheraghian, G.; Khalilinezhad, S.Sh: Effect of nanoclay on heavy oil recovery during polymer flooding. Pet. Sci. Technol. 33(9), 999–1007 (2015). https://doi.org/10.1080/10916466.2015.1014962

    Article  Google Scholar 

  32. AlamiNia, H.; Khalilinezhad, S.Sh: Application of hydrophilic silica nanoparticles in chemical enhanced heavy oil recovery processes. Energy Sources Part A (2017). https://doi.org/10.1080/15567036.2017.1299257 (Preprint)

    Article  Google Scholar 

  33. Cheraghian, G.; Khalilinezhad, S.Sh; Kamari, M.; Hemmati, M.; Masihi, M.; Bazgir, S.: Adsorption polymer on reservoir rock and role of the nanoparticles, clay and SiO2. Int. Nano Lett. 4, 114 (2014). https://doi.org/10.1007/s40089-014-0114-7

    Article  Google Scholar 

  34. Cheraghian, G.; Khalilinezhad, S.Sh; Kamari, M.; Hemmati, M.; Masihi, M.; Bazgir, S.: Effect of nanoclay on improved rheology properties of polyacrylamide solutions used in enhanced oil recovery. J. Pet. Explor. Prod. Technol. 5(2), 189–196 (2015). https://doi.org/10.1007/s13202-014-0125-y

    Article  Google Scholar 

  35. Cheraghian, G.; Khalilinezhad, S.Sh; Bazgir, S.: Improvement of thermal stability of polyacrylamide solution used as a nano-fluid in enhanced oil recovery process by nanoclay. Int. J. Nanosci. Nanotech. 11(3), 201–208 (2015)

    Google Scholar 

  36. Cheraghian, G.; Khalilinezhad, S.Sh.: Experimental investigation of polymer solutions used in enhanced oil recovery: thermal properties improved by nanoclay. In: 77th EAGE Conference and Exhibition, Madrid, Spain (2015). https://doi.org/10.3997/2214-4609.201412504

  37. Delshad, M.; Pope, G.A.; Sepehrnoori, K.: A compositional simulator for modeling surfactant enhanced aquifer remediation, 1 formulation. J. Contam. Hydrol. 23(4), 303–327 (1996). https://doi.org/10.1016/0169-7722(95)00106-9

    Article  Google Scholar 

  38. Reservoir Engineering Research Program.: UTCHEM-9.0, A Three-Dimensional Chemical Flood Simulator, Volumes 1 and 2. Center for Petroleum and Geosystems Engineering, The University of Texas at Austin, USA. (2000)

  39. Goudarzi, A.; Delshad, M.; Sepehrnoori, K.: A chemical EOR benchmark study of different reservoir simulators. Comput. Geosci. 94, 96–109 (2016). https://doi.org/10.1016/j.cageo.2016.06.013

    Article  Google Scholar 

  40. Goudarzi, A.: Modeling Conformance Control and Chemical EOR Processes Using Different Reservoir Simulators. (Ph.D. Dissertation), The University of Texas at Austin, Texas, USA (2015). https://www.pge.utexas.edu/images/pdfs/theses15/goudarzi.pdf

  41. Donaldson, E.C.; Chilingarian, G.V.; Yen, T.F.: Enhanced oil recovery. II Processes and Operations. Elsevier, Amsterdam (1989)

    Google Scholar 

  42. Bird, R.B.; Carreau, P.J.: A nonlinear viscoelastic model for polymer solutions and melts-I. Chem. Eng. Sci. 23(5), 427–434 (1968). https://doi.org/10.1016/0009-2509(68)87018-6

    Article  Google Scholar 

  43. Scott Blair, G.W.; Hening, J.C.; Wagstaff, A.: The flow of cream through narrow glass tubes. J. Phys. Chem. A 43(7), 853–864 (1939). https://doi.org/10.1021/j150394a004

    Article  Google Scholar 

  44. Mejia, L.; Tagavifar, M.; Xu, K.; Mejia, M.; Du, Y.; Balhoff, M.: Surfactant flooding in oil-wet micromodels with high permeability fractures. Fuel 241, 1117–1128 (2019). https://doi.org/10.1016/j.fuel.2018.12.076

    Article  Google Scholar 

  45. Ghahremani, H.; Mobaraki, S.; Khalilinezhad, S.Sh; Jarrahian, Kh: An experimental study of the performance of low-molecular-weight polymer for enhanced heavy oil recovery in a heterogeneous media. Geosyst. Eng. 21(2), 95–102 (2018). https://doi.org/10.1080/12269328.2017.1385424

    Article  Google Scholar 

  46. Khalilinezhad, S.Sh; Mobaraki, S.; Zakavi, M.; Omidvar Sorkhabadi, M.; Cheraghian, G.; Jarrahian, Kh: Mechanistic modeling of nanoparticles-assisted surfactant flood. Arab. J. Sci. Eng. 43(11), 6609–6625 (2018). https://doi.org/10.1007/s13369-018-3415-8

    Article  Google Scholar 

  47. Mahmoodi, M.; James, L.A.; Johansen, T.: Automated advanced image processing for micromodel flow experiments; an application using LabVIEW. J. Pet. Sci. Eng. 167, 829–843 (2018). https://doi.org/10.1016/j.petrol.2018.02.031

    Article  Google Scholar 

  48. Mohammadi, S.; Maghzi, A.; Ghazanfari, M.H.; Masihi, M.; Mohebbi, A.; Kharrat, R.: On the control of glass micro-model characteristics developed by laser technology. Energy Sources Part A 35(3), 193–201 (2013). https://doi.org/10.1080/15567036.2010.516325

    Article  Google Scholar 

  49. Emami Meybodi, H.; Kharrat, R.; Wang, X.: Study of microscopic and macroscopic displacement behaviors of polymer solution in water-wet and oil-wet media. Transp. Porous Media 89(1), 97–120 (2011). https://doi.org/10.1007/s11242-011-9754-5

    Article  Google Scholar 

  50. Zolotukhin, A.B.; Ursin, J.-R.: Introduction to reservoir petroleum engineering. Norwegian Academic Press, Høyskoleforlaget (2000)

    Google Scholar 

  51. Kargozarfard, Z.; Riazi, M.; Ayatollahi, Sh: Viscous fingering and its effect on areal sweep efficiency during water flooding: an experimental study. Pet. Sci. 16(1), 105–116 (2019). https://doi.org/10.1007/s12182-018-0258-6

    Article  Google Scholar 

  52. Hashmet, M.R.; Onur, M.; Tan, I.M.: Empirical correlations for viscosity of polyacrylamide solutions with the effects of salinity and hardness. J. Dispersion Sci. Technol. 35(4), 510–517 (2014). https://doi.org/10.1080/01932691.2013.797908

    Article  Google Scholar 

  53. Samanta, A.; Bera, A.; Ojha, K.; Mandal, A.: Effects of alkali, salts, and surfactant on rheological behavior of partially hydrolyzed polyacrylamide solutions. J. Chem. Eng. Data 55(10), 4315–4322 (2010). https://doi.org/10.1021/je100458a

    Article  Google Scholar 

  54. Chen, P.; Yao, L.; Liu, Y.; Luo, J.; Zhou, G.; Jiang, B.: Experimental and theoretical study of dilute polyacrylamide solutions: effect of salt concentration. J. Mol. Model. 18(7), 3153–3160 (2012). https://doi.org/10.1007/s00894-011-1332-9

    Article  Google Scholar 

  55. Ph, Gramain; Myard, Ph: Adsorption studies of polyacrylamides in porous media. J. Colloid Interface Sci. 84(1), 114–126 (1981). https://doi.org/10.1016/0021-9797(81)90265-4

    Article  Google Scholar 

  56. Anderson, G.A.: Simulation of chemical flood enhanced oil recovery processes including the effects of reservoir wettability. (MS Thesis), The University of Texas at Austin, Texas, USA (2006). https://www.pge.utexas.edu/images/pdfs/theses06/ganderson.pdf

  57. Al-Hashemi, A.R.; Luckham, P.F.; Heng, J.Y.Y.; Al-Maamari, R.S.; Zaitoun, A.; Al-Sharji, H.H.; Al-Wehaibi, T.K.: Adsorption of high-molecular-weight EOR polymers on glass surfaces using AFM and QCM-D. Energy Fuels 27(5), 2437–2444 (2013). https://doi.org/10.1021/ef302143a

    Article  Google Scholar 

  58. Mohammadi, S.; Masihi, M.; Ghazanfari, M.H.: Characterizing the role of shale geometry and connate water saturation on performance of polymer flooding in heavy reservoirs: experimental observations and numerical simulations. Transp. Porous Media 91(3), 973–998 (2012). https://doi.org/10.1007/s11242-011-9886-7

    Article  Google Scholar 

  59. Sedaghat, M.H.; Ghazanfari, M.H.; Masihi, M.; Rashtchian, D.: Experimental and numerical investigation of polymer flooding in fractured heavy oil five-spot systems. J. Pet. Sci. Eng. 108, 370–382 (2013). https://doi.org/10.1016/j.petrol.2013.07.001

    Article  Google Scholar 

  60. Wei, B.; Romero-Zerón, L.; Rodrigue, D.: Oil displacement mechanisms of viscoelastic polymers in enhanced oil recovery (EOR): a review. J. Pet. Explor. Prod. Technol. 4(2), 113–121 (2014). https://doi.org/10.1007/s13202-013-0087-5

    Article  Google Scholar 

  61. Wang, D.; Wang, G.; Wu, W.; Xia, H.; Yin, H.; The Influence of viscoelasticity on displacement efficiency-from micro to macro scale. In: Paper SPE 109016, Presented at the SPE Annual Technical Conference and Exhibition, Anaheim, California, USA (2007). https://doi.org/10.2118/109016-MS

  62. Yin, H.; Wang, D.; Zhong, H.; Meng, S.; Jiang, H.; Tang, E.: Flow characteristics of viscoelastic polymer solution in micro-pores. In: Paper SPE 154640, Presented at the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman (2012). https://doi.org/10.2118/154640-MS

  63. Wang, D.; Cheng, J.; Yang, Q.; Wenchao, G.; Qun, L.; Chen, F.: Viscous-Elastic polymer can increase microscale displacement efficiency in cores. In: Paper SPE 63227, Presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA (2000). https://doi.org/10.2118/63227-MS

  64. Xia, H.; Wang, D.; Wang, G.; Ma, W.G.; Deng, H.W.; Liu, J.: Mechanism of the effect of micro-forces on residual oil in chemical flooding. In: Paper SPE 114335, Presented at the SPE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, USA (2008). https://doi.org/10.2118/114335-MS

  65. Mohammadi, S.; Ghazanfari, M.H.; Masihi, M.; Vossoughi, Sh: Effect of small scale flow barriers heterogeneities and connate water on displacement efficiency of polymer floods to heavy oil reservoirs. Can. J. Chem. Eng. 91(10), 1729–1740 (2013). https://doi.org/10.1002/cjce.21804

    Article  Google Scholar 

Download references

Acknowledgements

The first author greatly appreciate Dr. Mahdi Amrollahi of the Amirkabir University of Technology (Tehran Polytechnic) for useful discussions during the course of this work. The financial support of the Eqbal Lahoori Institute of Higher Education is also highly appreciated. Finally, we would like to thank the reviewers for their invaluable comments and effort to improve the quality of our manuscript. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Shahram Khalilinezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilinezhad, S.S., Hashemi, A., Mobaraki, S. et al. Experimental Analysis and Numerical Modeling of Polymer Flooding in Heavy Oil Recovery Enhancement: A Pore-Level Investigation. Arab J Sci Eng 44, 10447–10465 (2019). https://doi.org/10.1007/s13369-019-04005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04005-3

Keywords

Navigation