Advertisement

RSM and Crow Search Algorithm-Based Optimization of Ultrasonicated Transesterification Process Parameters on Synthesis of Polyol Ester-Based Biolubricant

  • S. ArumugamEmail author
  • P. Chengareddy
  • A. Tamilarasan
  • V. Santhanam
Research Article - Chemical Engineering
  • 22 Downloads

Abstract

This study investigated the optimization of ultrasound-aided transesterification process variables for the synthesis of polyol ester-based biolubricant. A response surface methodology based on Box–Behnken design coupled with crow search algorithm methodology was adopted to optimize the ultrasonicated transesterification process variables such as an ultrasonic pulse, amplitude, catalyst concentration, and reaction temperature in order to maximize the yield percentage of polyol ester. The formation of pentaerythritol ester was confirmed by Fourier transform infrared spectroscopy and gas chromatography. The significant properties of the new formulation were compared with synthetic grade compressor oil. Improved yield of 81.4% of pentaerythritol ester was accomplished with an ultrasonic pulse of 15 s, an ultrasonic amplitude of 60%, a catalyst concentration of 1.5 wt%, and the reaction temperature of 100 °C. This optimization study suggested that ultrasonicated successive transesterification process is an effective method in substituting conventional successive transesterification process for the synthesis of pentaerythritol ester-based biolubricant.

Keywords

Box–Behnken method Crow search algorithm Pentaerythritol ester Ultrasonication Response surface methodology Transesterification 

References

  1. 1.
    Arumugam, S.; Sriram, G.; Ellappan, R.: Biolubricant-biodiesel combination of rapeseed oil: an experimental investigation on engine oil tribology, performance, and emissions of variable compression engine. Energy 72, 618–627 (2014)CrossRefGoogle Scholar
  2. 2.
    Arumugam, S.; Ellappan, R.; Sangavi, S.; Sriram, G.; Ramakrishna, P.: Feasibility analysis of biodegradable automotive lubricant: an evaluation of material-lubricant compatibility in a corrosion perspective. Arab. J. Sci. Eng. 43(3), 1345–1368 (2018)CrossRefGoogle Scholar
  3. 3.
    Arumugam, S.; Sriram, G.; Rajmohan, T.: Multi-response optimization of epoxidation process parameters of rapeseed oil using response surface methodology (RSM)—based desirability analysis. Arab. J. Sci. Eng. 39(3), 2277–2287 (2014)CrossRefGoogle Scholar
  4. 4.
    Angulo, B.; Fraile, J.M.; Gil, L.; Herrerias, C.I.: Bio-lubricants production from fish oil residue by transesterification with trimethylolpropane. J. Clean. Prod. 202, 81–87 (2018)CrossRefGoogle Scholar
  5. 5.
    Ivan-Tan, C.T.; Islam, A.; Yunus, R.; Taufiq-Yap, Y.H.: Screening of solid base catalysts on palm oil-based Bio lubricant synthesis. J. Clean. Prod. 148, 441–451 (2017)CrossRefGoogle Scholar
  6. 6.
    Delgado, M.A.; Quinchia, L.A.; Spikes, H.A.; Gallegos, C.: Suitability of ethyl cellulose as multifunctional additive for blends of vegetable oil-based lubricants. J. Clean. Prod. 151, 1–9 (2017)CrossRefGoogle Scholar
  7. 7.
    Hamdan, S.H.; Chong, W.W.F.; Ng, J.-H.; Chong, C.T.; Zhang, H.: Nano-tribological characterization of palm oil-based trimethylolpropane ester for application as boundary lubricant. Tribol. Int. 127, 1–9 (2018)CrossRefGoogle Scholar
  8. 8.
    Fernandes, K.V.; Papadaki, A.; da Silva, J.A.C.; Fernandez-Lafuente, R.; Koutinas, A.A.; Freire, D.M.G.: Enzymatic esterification of palm fatty-acid distillate for the production of polyol esters with biolubricant properties. Ind. Crop. Prod. 116, 90–96 (2018)CrossRefGoogle Scholar
  9. 9.
    Cavalcanti, E.D.C.; Aguieiras, E.C.G.; da Silva, P.R.; Duarte, J.G.; Cipolatti, E.P.; Fernandez-Lafuente, R.; da Silva, J.A.C.; Freire, D.M.G.: Improved production of biolubricants from soybean oil and different polyols via esterification reaction catalyzed by immobilized lipase from Candida rugosa. Fuel 215, 705–713 (2018)CrossRefGoogle Scholar
  10. 10.
    Alias, N.H.; Yunus, R.; Idris, A.; Omar, R.: Effects of additives on oxidation characteristics of palm oil-based trimethylolpropane ester in hydraulics applications. Eur. J. Lipid. Sci. Tech. 111(4), 368–375 (2009)CrossRefGoogle Scholar
  11. 11.
    Zainal, N.A.; Zulkifli, N.W.M.; Gulzar, M.; Masjuki, H.H.: A review on the chemistry, production, and technological potential of bio-based lubricants. Renew. Sustain. Energy Rev. 82(1), 80–102 (2018)CrossRefGoogle Scholar
  12. 12.
    Heikal, E.K.; Elmelawy, M.S.; Khalil, S.A.; Elbasuny, N.M.: Manufacturing of environment friendly biolubricants from vegetable oils. Egypt. J. Petrol. 26, 53–59 (2017)CrossRefGoogle Scholar
  13. 13.
    Hashem, A.I.; Abou Elmagd, W.S.; Salem, A.E.; El-Kasaby, M.; El-Nahas, A.E.: Conversion of some vegetable oils into synthetic lubricants via two successive transesterifications. Energy Sources 35, 909–912 (2013)CrossRefGoogle Scholar
  14. 14.
    Yunus, R.; Fakhru’l-Razi, A.; Ooi, T.L.; Iyuke, S.E.; Idris, A.: Development of optimum synthesis methods for transesterification of palm oil methyl esters and trimethylolpropane to environmentally acceptable palm oil-based lubricant. J. Oil Palm Res. 15(2), 35–41 (2003)Google Scholar
  15. 15.
    EI-Magly, I.A.; Nagib, H.K.; Mokhtar, W.M.: Aspects of the behavior of some pentaerythritol ester base synlubes for turbo-engines. Egypt. J. Pet. 22, 169–177 (2013)CrossRefGoogle Scholar
  16. 16.
    Sarve, A.; Sonawane, S.S.; Varma, M.N.: Ultrasound assisted biodiesel production from sesame (Sesamum indicum L.) oil using barium hydroxide as a heterogeneous catalyst: comparative assessment of prediction abilities between response surface methodology (RSM) and artificial neural network (ANN). Ultrason. Sonochem. 26, 218–228 (2015)CrossRefGoogle Scholar
  17. 17.
    Avramovic, J.M.; Stamenkovic, O.S.; Todorovic, O.B.; Lazic, M.L.; Veljkovic, V.B.: The optimization of the ultrasound-assisted base catalyzed sunflower oil methanolysis by a full factorial design. Fuel Process. Technol. 91, 1551–1557 (2010)CrossRefGoogle Scholar
  18. 18.
    Poosumas, J.; Ngaosuwan, K.; Quitain, A.T.; Assabumrungrat, S.: Role of ultrasonic irradiation on transesterification of palm oil using calcium oxide as a solid base catalyst. Energy Convers. Manag. 120, 62–70 (2016)CrossRefGoogle Scholar
  19. 19.
    Kumar, G.; Kumar, D.; Johari, R.: Time reducing process for biofuel production from non-edible oil assisted by ultrasonication. Ultrason. Sonochem. 21, 1618–1623 (2014)CrossRefGoogle Scholar
  20. 20.
    Aziz, N.A.M.; Yunusa, R.; Rashid, U.; Syam, A.M.: Application of response surface methodology (RSM) for optimizing the palm-based pentaerythritol ester synthesis. Ind. Crop. Prod. 62, 305–312 (2014)CrossRefGoogle Scholar
  21. 21.
    Leong, T.; Ashokkumar, M.; Sandra, K.: The fundamentals of power ultrasound—a review. Acoust. Aust. 39, 54–63 (2011)Google Scholar
  22. 22.
    Veljkovic, V.B.; Avramovic, J.M.; Stamenkovic, O.S.: Biodiesel production by ultrasound-assisted transesterification: state of the art and the perspectives. Renew. Sustain. Energy Rev. 16, 1193–1209 (2012)CrossRefGoogle Scholar
  23. 23.
    Maddikeri, G.I.; Pandit, A.B.; Gogate, P.R.: Intensification approaches for biodiesel synthesis from waste cooking oil: a review. Ind. Eng. Chem. Res. 51, 14610–14628 (2012)CrossRefGoogle Scholar
  24. 24.
    Arumugam, S.; Chengareddy, P.; Sriram, G.: Synthesis, characterisation and tribological investigation of vegetable oil based pentaerythryl ester as biodegradable compressor oil. Ind. Crop. Prod. 123, 617–628 (2018)CrossRefGoogle Scholar
  25. 25.
    Koutsouki, A.A.; Tegou, E.; Badeka, A.; Kontakos, S.; Pomonis, P.J.; Kontominas, M.G.: In situ and conventional transesterification of rapeseeds for biodiesel production: the effect of direct sonication. Ind. Crop. Prod. 84, 399–407 (2016)CrossRefGoogle Scholar
  26. 26.
    Arumugam, S.; Sriram, G.: Effect of bio-lubricant and biodiesel-contaminated lubricant on tribological behavior of cylinder liner-piston ring combination. Tribol. Trans. 55, 438–445 (2012)CrossRefGoogle Scholar
  27. 27.
    Kamil, R.N.M.; Yusup, S.; Ismail, L.: Application of Taguchi method for optimization of polyol ester production by esterification of Neopentyl glycol with hexanoic acid. Asian J. Chem. 25(15), 8256–8260 (2013)CrossRefGoogle Scholar
  28. 28.
    Mostafaei, M.; Ghobadian, B.; Barzegar, M.; Banakar, A.: Optimization of ultrasonic assisted continuous production of biodiesel using response surface methodology. Ultrason. Sonochem. 27, 54–61 (2015)CrossRefGoogle Scholar
  29. 29.
    Kumar, G.: Ultrasonic-assisted reactive-extraction is a fast and easy method for biodiesel production from Jatropha curcas oilseeds. Ultrason. Sonochem. 37, 634–639 (2017)CrossRefGoogle Scholar
  30. 30.
    Kashyap, S.S.; Gogate, P.R.; Joshi, S.M.: Ultrasound assisted synthesis of biodiesel from karanja oil by interesterification: intensification studies and optimization using RSM. Ultrason. Sonochem. (2018).  https://doi.org/10.1016/j.ultsonch.2018.08.019 Google Scholar
  31. 31.
    Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)CrossRefGoogle Scholar
  32. 32.
    Hassanien, A.E.; Rizk-Allah, R.M.; Elhoseny, M.: A hybrid crow search algorithm based on rough searching scheme for solving engineering optimization problems. J Ambient Intel. Hum. Comput. (2018).  https://doi.org/10.1007/s12652-018-0924-y Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  • S. Arumugam
    • 1
    Email author
  • P. Chengareddy
    • 1
  • A. Tamilarasan
    • 1
  • V. Santhanam
    • 2
  1. 1.Department of Mechanical EngineeringSri Chandrasekharendra Saraswathi Viswa MahavidyalayaEnathur, KanchipuramIndia
  2. 2.Department of ChemistrySri Chandrasekharendra Saraswathi Viswa MahavidyalayaEnathur, KanchipuramIndia

Personalised recommendations