Advertisement

Esterification of Sesbania Gum Hydrolysate in Ionic Liquid, Optimization and Characterization of Its Derivatives

  • Hongbo TangEmail author
  • Pingxiu Sun
  • Yanping Li
  • Siqing Dong
Research Article - Chemistry
  • 4 Downloads

Abstract

The goal of this work focuses to optimize some parameters in esterification process of sesbania gum hydrolysate by response surface methodology, and to characterize sesbania gum and its derivatives. The experimental results indicated that degree of substitution (DS) of maleate enzymolysis sesbania gum (MESG) could reach a value of 0.768 when an ionic liquid, that is, 1-butyl-3-methylimidazolium chloride, was used as a solvent during the esterification. The obtained regression model could well evaluate the synthesis of MESG. The stretching vibration peak of C–H bonds in MESG was split into two peaks at the wave numbers of 3937 and 2886 cm−1 owing to high DS. The esterification almost changed the crystalline structure of MESG into an amorphous one, whereas the enzymatic hydrolysis less affected the crystalline structure of sesbania gum (SG). The structure of SG granules was severely destroyed by such an esterification with an ionic liquid. The esterification increased the thermal stability of SG. Adding MESG could obviously influence the potato starch pasting characteristics such as peak viscosity, trough viscosity, final viscosity, setback and breakdown.

Keywords

Sesbania gum Enzymolysis Esterification Ionic liquid Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Authors are grateful to individuals who have supported their research.

Compliance with Ethical Standards

Conflict of interest

Authors declare that they have no conflict of interest.

References

  1. 1.
    Zhang, L.; Zhang, P.; Li, X.; Cui, Y.: Sesbania gum xanthate supported palladium complex as an efficient catalyst for heck reaction. J. Appl. Polym. Sci. 4, 2198–2202 (2007)CrossRefGoogle Scholar
  2. 2.
    Rekaby, M.M.; Elthalouth, I.A.; Rahman, A.A.H.; Elkhabery, E.S.: Technological evaluation of carboxymethyl sesbania galactomannan gum, derivatives as thickeners in reactive printing. BioResources 5, 1517–1529 (2010)Google Scholar
  3. 3.
    Gallão, M.I.; Furtado, R.S.; de Brito, E.S.: Cytochemical characterization and structural approach to Prosopis juliflora (Sw) D.C. seed gum extraction. J. Sci. Food Agric. 85, 2321–2324 (2005)CrossRefGoogle Scholar
  4. 4.
    Zhang, Q.; Gao, Y.; Zhai, Y.A.; Liu, F.Q.; Gao, G.: Synthesis of sesbania gum supported dithiocarbamate chelating resin and studies on its adsorption performance for metal ions. Carbohydr. Polym. 73, 359–363 (2008)CrossRefGoogle Scholar
  5. 5.
    Liu, H.J.; Qi, R.L.; Gao, L.; Xue, M.; Shen, D.: Grafting modification of sesbania gum and sizing performance. Adv. Mater. Res. 424–425, 1211–1214 (2012)Google Scholar
  6. 6.
    Zhang, Q.; Li, D.; Zhang, H.; Su, G.; Li, G.: Preparation and properties of poly(lactic acid)/sesbania gum/nano-TiO2 composites. Polym. Bull. 75, 623–635 (2018)CrossRefGoogle Scholar
  7. 7.
    Pal, P.; Banerjee, A.; Halder, U.; Pandey, J.P.; Sen, G.; Bandopadhya, R.: Conferring antibacterial properties on sesbania gum via microwave-assisted graft copolymerization of DADMAC. J. Polym. Environ. 26, 3272–3282 (2018)CrossRefGoogle Scholar
  8. 8.
    Shen, D.; Xue, M.; Zhang, L.; Liu, H.; Gao, L.; Cui, Y.: Preparation and characterization of oxidized sesbania gum and evaluation of its warp sizing performance for fine cotton yarns. Polym. Degrad. Stab. 96, 2181–2818 (2011)Google Scholar
  9. 9.
    Xu, Y.; Miladinov, V.; Hanna, M.A.: Starch acetate-maleate mixed ester synthesis and characterization. Cereal Chem. 82, 336–340 (2005)CrossRefGoogle Scholar
  10. 10.
    Sarkar, S.; Singhal, R.S.: Esterification of guar gum hydrolysate and gum arabic with n-octenyl succinic anhydride and oleic acid and its evaluation as wall material in microencapsulation. Carbohydr. Polym. 86, 1723–1731 (2011)CrossRefGoogle Scholar
  11. 11.
    Li, D.; Henschena, J.; Ek, M.: Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield. Green Chem. 19, 5564–5567 (2017)CrossRefGoogle Scholar
  12. 12.
    Chi, H.; Xu, K.; Wu, X.; Chen, Q.; Xue, D.; Song, C.; Wang, P.: Effect of acetylation on the properties of corn starch. Food Chem. 106, 923–928 (2008)CrossRefGoogle Scholar
  13. 13.
    Fonseca-Florido, H.A.; Vázquez-García, H.G.; Méndez-Montealvo, G.; Basilio-Cortés, U.A.; Navarro-Cortés, R.; Rodríguez-Marín, M.L.; Gómez-Aldapa, C.A.: Effect of acid hydrolysis and OSA esterification of waxy cassava starch on emulsifying properties in Pickering-type emulsions. LWT Food Sci. Technol. 91, 258–264 (2018)CrossRefGoogle Scholar
  14. 14.
    D’Melo, D.; Sabnis, A.; Shenoy, M.A.; Kathalewar, M.: Preparation of acetylated guar gum—unsaturated polyester composites & effect of water on their properties. Curr. Chem. Lett. 1, 147–156 (2012)CrossRefGoogle Scholar
  15. 15.
    Emeje, M.; Kalita, R.; Isimi, C.; Buragohain, A.; Kunle, O.; Ofoefule, S.: Synthesis, physicochemical characterization, and functional properties of an esterified starch from an underutilized source in Nigeria. Afr. J. Food Agric. Nutr. Dev. 12, 7001–7018 (2012)Google Scholar
  16. 16.
    Silaket, P.; Chatakanonda, P.; Tran, T.; Wansuksri, R.; Piyachomkwan, K.; Sriroth, K.: Thermal properties of esterified cassava starches and their maltodextrins in various water systems. Starch/Starke 66, 1022–1032 (2014)CrossRefGoogle Scholar
  17. 17.
    Huang, L.; Xiao, C.; Chen, B.: A novel starch-based adsorbent for removing toxic Hg(II) and Pb(II) ions from aqueous solution. J. Hazard. Mater. 192, 832–836 (2011)CrossRefGoogle Scholar
  18. 18.
    Muhammad, K.; Hussin, F.; Man, Y.; Ghazali, H.; Kennedy, J.: Effect of pH on phosphorylation of sago starch. Carbohydr. Polym. 42, 85–90 (2000)CrossRefGoogle Scholar
  19. 19.
    Xing, G.X.; Zhang, S.F.; Ju, B.Z.; Yang, J.Z.: Microwave-assisted synthesis of starch maleate by dry method. Starch/Starke 58, 464–467 (2006)CrossRefGoogle Scholar
  20. 20.
    Zuo, Y.; Gu, J.; Yang, L.; Qiao, Z.; Tan, H.; Zhang, Y.: Synthesis and characterization of maleic anhydride esterified corn starch by the dry method. Int. J. Biol. Macromol. 62, 241–247 (2013)CrossRefGoogle Scholar
  21. 21.
    Fidale, L.C.; Possidonio, S.; EI Seoud, O.A.: Application of 1-allyl-3-(1-butyl)imidazolium chloride in the synthesis of cellulose esters: properties of the ionic liquid, and comparison with other solvents. Macromol. Biosci. 9, 813–821 (2009)CrossRefGoogle Scholar
  22. 22.
    Abd El-Thalouth, I.; Rekaby, M.; Abdel-Rahman, A.H.; El-Khabery, S.A.: Preparation and characterization of phosphorylated sesbania galactomannan gum derivatives and their applications in textile printing. Res. J. Text. Appar. 16, 68–76 (2012)CrossRefGoogle Scholar
  23. 23.
    Rossi, B.; Ponzini, E.; Merlini, L.; Grandori, R.; Galante, Y. M.: Characterization of aerogels from chemo-enzymatically oxidized galactomannans as novel polymeric biomaterials. Eur. Polym. J. 93, 347–357 (2017)CrossRefGoogle Scholar
  24. 24.
    Li, H.; Gao, L.; Xue, M.; Shen, D.; Cui, Y.: Grafting modification of sesbania gum and its application to textile sizing. J. Text. Res. 424, 1211–1214 (2012)Google Scholar
  25. 25.
    Wang, Z.; Zhu, L.; Zhang, G.; Zhao, G.; Zhu, Y.; Chang, L.: Investigation of pyrolysis kinetics of carboxymethyl hydroxypropyl sesbania gum. J. Therm. Anal. 49, 1509–1512 (1997)CrossRefGoogle Scholar
  26. 26.
    Tian, J.; Yin, J.; Tang, X.; Chen, J.; Luo, X.; Rao, G.: Enhanced leaching process of a low-grade weathered crust elution-deposited rare earth ore with carboxymethyl sesbania gum. Hydrometallurgy 139,124–131 (2013)CrossRefGoogle Scholar
  27. 27.
    Tang, H.; Yao, Y.; Li, Y.; Dong, S.: Effect of cross-linking and oxidization on structure and properties of sesbania gum. Int. J. Biol. Macromol. 114, 640–648 (2018)CrossRefGoogle Scholar
  28. 28.
    Mudgil, D.; Barak, S.; Khatkar, B.S.: Optimization of enzymatic hydrolysis of guar gum using response surface methodology. J. Food Sci. Technol. 51, 1600–1605 (2012)CrossRefGoogle Scholar
  29. 29.
    Endo, R.; Setoyama, M.; Yamamoto, K.; Kadokawa, J.: Acetylation of xanthan gum in ionic liquid. J. Polym. Environ. 23, 199–205 (2014)CrossRefGoogle Scholar
  30. 30.
    Tang, H.; Liu, L.; Li, Y.; Dong, S.: Debranching potato starch: synthesis, optimization and thermal property. Polym. Bull. 72, 2537–2552 (2015)CrossRefGoogle Scholar
  31. 31.
    Gill, A.N.; Iftikhar, A.; Rashid, A.; Amin, M.; Khan, R.R.M.; Rafique, H.M.; Jelani, S.; Adnan, A.: Lipase-catalyzed green synthesis of starch–maleate monoesters and its characterization. J. Iran. Chem. Soc. 15, 1939–1945 (2018)CrossRefGoogle Scholar
  32. 32.
    Pal, P.; Pandey, J. P.; Sen, G.: Grafted sesbania gum: A novel derivative for sugarcane juice clarification. Int. J. Biol. Macromol. 114, 349–356 (2018)CrossRefGoogle Scholar
  33. 33.
    Tang, H.; Gao, S.; Li, Y.; Dong, S.: Modification mechanism of sesbania gum, and preparation, property, adsorption of dialdehyde cross-linked sesbania gum. Carbohydr. Polym. 149, 151–162 (2016)CrossRefGoogle Scholar
  34. 34.
    Gong, H.H.; Liu, M.Z.; Chen, J.C.; Han, F.; Gao, C.M.; Zhang, B.: Synthesis and characterization of carboxymethyl guar gum and rheological properties of its solutions. Carbohydr. Polym. 88, 1015–1022 (2012)CrossRefGoogle Scholar
  35. 35.
    Sujka, M.; Jamroz, J.: Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocolloids 31, 413–419 (2013)CrossRefGoogle Scholar
  36. 36.
    Raquez, J.-M.; Nabar, Y.; Srinivasan, M.; Shin, B.-Y.; Narayan, R.; Dubois, P.: Maleated thermoplastic starch by reactive extrusion. Carbohydr. Polym. 74, 159–169 (2008)CrossRefGoogle Scholar
  37. 37.
    Verma, S.; Ahuja, M.: Carboxymethyl sesbania gum: Synthesis, characterization and evaluation for drug delivery. Int. J. Biol. Macromol. 98, 75–83 (2017)CrossRefGoogle Scholar
  38. 38.
    Zhou, H.; Wang, J.; Li, J.; Fang, X.; Sun, Y.: Pasting properties of Angelica dahurica starches in the presence of NaCl, Na2CO3, NaOH, glucose, fructose and sucrose. Starch/Stärke 63, 323–332 (2011)CrossRefGoogle Scholar
  39. 39.
    Lan, S.; Leng, Z.; Guo, N.; Wu, X.; Gan, S.: Sesbania gum-based magnetic carbonaceous nanocomposites: facile fabrication and adsorption behavior. Colloids Surf. A 446, 163–171 (2014)CrossRefGoogle Scholar
  40. 40.
    Zuo, Y.; Gu, J.; Yang, L.; Qiao, Z.; Tan, H.; Zhang, Y.: Preparation and characterization of dry method esterified starch/polylactic acid composite materials. Int. J. Biol. Macromol. 64, 174–180 (2014)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  • Hongbo Tang
    • 1
    Email author
  • Pingxiu Sun
    • 1
  • Yanping Li
    • 1
  • Siqing Dong
    • 1
  1. 1.Science SchoolShenyang University of TechnologyShenyang CityPeople’s Republic of China

Personalised recommendations