Cluster-Based Architecture Capable for Device-to-Device Millimeter-Wave Communications in 5G Cellular Networks

  • Ghazal Mesbahi
  • Akbar Ghaffarpour RahbarEmail author
Research Article - Computer Engineering and Computer Science


The fifth-generation (5G) wireless networks are the newest mobile technologies proposed for supporting high-data-rate traffic and challenges of previous generations such as spectrum crisis and high energy consumption. Millimeter-wave (mmWave) communication is a promising technology for 5G cellular networks aiming at solving microwave spectrum crisis and providing very high data rates for users. Enabling device-to-device (D2D) communications over mmWave networks can improve the efficiency of these networks. In this article, a new cluster-based architecture capable for D2D mmWave communication (CADM) with TDMA-based medium access control structure is proposed to improve the performance of 5G networks. Using clustering for CADM results in reducing energy consumption and prolonging network lifetime. In addition, enabling simultaneous short-distance mmWave connections on the same frequencies in this architecture not only improves data rates, throughput, and spectral efficiency but also reduces end-to-end delay of 5G mobile networks.


5G mobile networks D2D communications mmWave Simultaneous communications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ramnarayan; Kumar, V.; Kumar, V.: A new generation wireless mobile network-5G. Int. J. Comput. Appl. 70, 26–29 (2013)Google Scholar
  2. 2.
    Wang, C.-X.; Haider, F.; Gao, X.; You, X.-H.; Yang, Y.; Yuan, D.; et al.: Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52, 122–130 (2014)CrossRefGoogle Scholar
  3. 3.
    Tehrani, M.N.; Uysal, M.; Yanikomeroglu, H.: Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions. IEEE Commun. Mag. 52, 86–92 (2014)CrossRefGoogle Scholar
  4. 4.
    Wei, L.; Hu, R.Q.; Qian, Y.; Wu, G.: Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wirel. Commun. 21, 136–143 (2014)Google Scholar
  5. 5.
    Alsharif, M.H.; Nordin, R.: Evolution towards fifth generation (5G) wireless networks: current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells. Springer Telecommun. Syst. 64, 617–637 (2016)CrossRefGoogle Scholar
  6. 6.
    Qiao, J.; Shen, X.S.; Mark, J.W.; Shen, Q.; He, Y.; Lei, L.: Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Commun. Mag. 53, 209–215 (2015)CrossRefGoogle Scholar
  7. 7.
    Gandotra, P.; Jha, R.K.; Jain, S.: A survey on device-to-device (D2D) communication. J. Netw. Comput. Appl. 78, 9–29 (2017)CrossRefGoogle Scholar
  8. 8.
    Radaydeh, R.M.; Al-Qahtani, F.S.; Celik, A.; Alouini, M.-S.: Dynamic downlink spectrum access for D2D-enabled heterogeneous networks. In: GLOBECOM 2017–2017 IEEE Global Communications Conference, pp. 1–7. Singapore (2017)Google Scholar
  9. 9.
    Radaydeh, R.M.; Al-Qahtani, F.; Celik, A.; Qaraqe, K.A.; Alouini, M.-S.: Imperfect D2D association in spectrum-shared cellular networks under interference and transmit power constraints. In: 2018 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6. Kansas City (2018)Google Scholar
  10. 10.
    Celik, A.; Radaydeh, R.M.; Al-Qahtani, F.S.; Alouini, M.-S.: Resource allocation and interference management for D2D-enabled DL/UL decoupled Het-Nets. IEEE Access 5, 22735–22749 (2017)CrossRefGoogle Scholar
  11. 11.
    Celik, A.; Radaydeh, R.M.; Al-Qahtani, F.S.; Alouini, M.-S.: Joint interference management and resource allocation for device-to-device (D2D) communications underlying downlink/uplink decoupled (DUDe) heterogeneous networks. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6. Paris (2017)Google Scholar
  12. 12.
    Niu, Y.; Li, Y.; Jin, D.; Su, L.; Vasilakos, A.V.: A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wirel. Netw. 21, 2657–2676 (2015)CrossRefGoogle Scholar
  13. 13.
    Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; et al.: Millimeter wave mobile communications for 5G cellular: it will work!. IEEE Access 1, 335–349 (2013)CrossRefGoogle Scholar
  14. 14.
    Yu, J.Y.; Chong, P.H.J.: A survey of clustering schemes for mobile ad hoc networks. IEEE Commun. Surv. Tutor. 7, 32–48 (2005)CrossRefGoogle Scholar
  15. 15.
    Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data: Recent Advances in Clustering, pp. 25–71. Springer, Berlin (2006)CrossRefGoogle Scholar
  16. 16.
    Correa, B.A.; Ospina, L.; Hincapié, R.C.: Survey of clustering techniques for mobile ad hoc networks. Rev. Fac. de Ing. Univ. de Antioq. 41, 145–161 (2007)Google Scholar
  17. 17.
    Abbasi, A.A.; Younis, M.: A survey on clustering algorithms for wireless sensor networks. Comput. Commun. 30, 2826–2841 (2007)CrossRefGoogle Scholar
  18. 18.
    Wunsch, D.; Xu, R.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645–678 (2005)CrossRefGoogle Scholar
  19. 19.
    Rai, P.; Singh, S.: A survey of clustering techniques. Int. J. Comput. Appl. 7, 1–5 (2010)Google Scholar
  20. 20.
    Singh, S.; Singh, P.: Key concepts and network architecture for 5G mobile technology. Int. J. Sci. Res. Eng. Technol. (IJSRET) 1, 165–170 (2012)Google Scholar
  21. 21.
    Gupta, A.; Jha, R.K.: A survey of 5G network: architecture and emerging technologies. IEEE Access 3, 1206–1232 (2015)Google Scholar
  22. 22.
    Qian, M.; Wang, Y.; Zhou, Y.; Tian, L.; Shi, J.: A super base station based centralized network architecture for 5G mobile communication systems. Elsevier Digit. Commun. Netw. 1, 152–159 (2015)CrossRefGoogle Scholar
  23. 23.
    Zhang, Z.; Zhang, W.; Zeadally, S.; Wang, Y.; Liu, Y.: Cognitive radio spectrum sensing framework based on multi-agent architecture for 5G networks. IEEE Wirel. Commun. 22, 34–39 (2015)CrossRefGoogle Scholar
  24. 24.
    Abrol, A.; Jha, R.K.: Power optimization in 5G networks: a step towards GrEEn communication. IEEE Access 4, 1355–1374 (2016)CrossRefGoogle Scholar
  25. 25.
    Lin, Z.; Gao, Z.; Huang, L.; Chen, C.-Y.; Chao, H.-C.: Hybrid architecture performance analysis for device-to-device communication in 5G cellular network. Springer Mob. Netw. Appl. 20, 713–724 (2015)CrossRefGoogle Scholar
  26. 26.
    Chatterjee, M.; Das, S.K.; Turgut, D.: WCA: a weighted clustering algorithm for mobile ad hoc networks. Cluster Comput. 5, 193–204 (2002)CrossRefGoogle Scholar
  27. 27.
    Pasca, S.T.V.; Akilesh, B.; Anand, A.V.; Tamma, B.R.: A NS-3 module for LTE UE energy consumption. In: 2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), pp. 1–6. Bangalore (2016)Google Scholar
  28. 28.
    Haneda, K.; Tian, L.; Asplund, H.; Li, J.; Wang, Y.; Steer, D.; et al.: Indoor 5G 3GPP-like channel models for office and shopping mall environments. In: 2016 IEEE International Conference on Communications Workshops (ICC), pp. 694–699. Kuala Lumpur (2016)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Computer Networks Research LabSahand University of TechnologyTabrizIran

Personalised recommendations