Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 7, pp 6217–6229 | Cite as

Understanding the Reaction Mechanism of Lithium–Sulfur Batteries by In Situ/Operando X-ray Absorption Spectroscopy

  • Liang Zhang
  • Jinghua GuoEmail author
Review - Chemistry
  • 67 Downloads

Abstract

Because of the high theoretical energy density of \(2600\, \hbox {Wh kg}^{-1}\), lithium–sulfur (Li–S) batteries are regarded as one of the most promising energy storage technologies to meet the increasing requirement from personal devices to automobiles. However, the practical application of Li–S batteries is still challenging due to technical obstacles, such as low sulfur utilization and poor lifetime. Therefore, understanding the electrode reaction mechanism is of critical importance to further improve the battery performance and lifetime. Here, we review recent progress in the application of in situ and operando X-ray absorption spectroscopy in characterizing Li–S batteries. We discuss in detail how this advanced technique helps researchers understand the redox process of the electrode materials as well as the influence of polymer binder and electrolyte additive on the polysulfide shuttle effect, which provide valuable information for designing better Li–S batteries. A general conclusion and critical further research directions are also provided at the end.

Keywords

X-ray absorption spectroscopy Lithium–sulfur (Li–S) batteries In situ and operando Polymer binder Electrolyte additive Redox mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work at the Advanced Light Source of the Lawrence Berkeley National Laboratory was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the US Department of Energy, Office of Science, Basic Energy Sciences.

References

  1. 1.
    Xu, K.: Electrolytes and interphases in Li–ion batteries and beyond. Chem. Rev. 114, 11503–618 (2014)CrossRefGoogle Scholar
  2. 2.
    Armand, M.; Tarascon, J.-M.: Building better batteries. Nature 451, 652–657 (2008)CrossRefGoogle Scholar
  3. 3.
    Li, M.; Lu, J.; Chen, Z.; Amine, K.: 30 years of lithium–ion batteries. Adv. Mater. 30, 1800561 (2018)CrossRefGoogle Scholar
  4. 4.
    Chu, S.; Cui, Y.; Liu, N.: The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016)CrossRefGoogle Scholar
  5. 5.
    Meng, J.; Guo, H.; Niu, C.; Zhao, Y.; Xu, L.; Li, Q.; Mai, L.: Advances in structure and property optimizations of battery electrode materials. Joule 1, 522 (2017)CrossRefGoogle Scholar
  6. 6.
    Lin, D.; Liu, Y.; Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017)CrossRefGoogle Scholar
  7. 7.
    Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G.: Li–ion battery materials: present and future. Mater. Today 18, 252–264 (2015)CrossRefGoogle Scholar
  8. 8.
    Yang, Y.; Zheng, G.; Cui, Y.: Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018–32 (2013)CrossRefGoogle Scholar
  9. 9.
    Seh, Z.W.; Sun, Y.; Zhang, Q.; Cui, Y.: Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016)CrossRefGoogle Scholar
  10. 10.
    Manthiram, A.; Fu, Y.; Chung, S.H.; Zu, C.; Su, Y.S.: Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–87 (2014)CrossRefGoogle Scholar
  11. 11.
    Pang, Q.; Liang, X.; Kwok, C.Y.; Nazar, L.F.: Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016)CrossRefGoogle Scholar
  12. 12.
    Fang, R.; Zhao, S.; Sun, Z.; Wang, D.W.; Cheng, H.M.; Li, F.: More reliable lithium–sulfur batteries: status solutions and prospects. Adv. Mater. 29, 1606823 (2017)CrossRefGoogle Scholar
  13. 13.
    Li, G.; Wang, S.; Zhang, Y.; Li, M.; Chen, Z.; Lu, J.: Revisiting the role of polysulfides in lithium–sulfur batteries. Adv. Mater. 30, 1705590 (2018)CrossRefGoogle Scholar
  14. 14.
    Rosenman, A.; Markevich, E.; Salitra, G.; Aurbach, D.; Garsuch, A.; Chesneau, F.F.: Review on Li–sulfur battery systems: an integral perspective. Adv. Energy Mater. 5, 1500212 (2015)CrossRefGoogle Scholar
  15. 15.
    Urbonaite, S.; Poux, T.; Novák, P.: Progress towards commercially viable Li–S battery cells. Adv. Energy Mater. 5, 1500118 (2015)CrossRefGoogle Scholar
  16. 16.
    Wang, H.; Adams, B.D.; Pan, H.; Zhang, L.; Han, K.S.; Estevez, L.; Lu, D.; Jia, H.; Feng, J.; Guo, J.; Zavadil, K.R.; Shao, Y.; Zhang, J.-G.: Tailored reaction route by micropore confinement for Li–S batteries operating under lean electrolyte conditions. Adv. Energy Mater. 8, 1800590 (2018)CrossRefGoogle Scholar
  17. 17.
    Ji, X.; Lee, K.T.; Nazar, L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–6 (2009)CrossRefGoogle Scholar
  18. 18.
    Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.M.: Li–O\(_{2}\) and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012)CrossRefGoogle Scholar
  19. 19.
    Zhao, E.; Nie, K.; Yu, X.; Hu, Y.-S.; Wang, F.; Xiao, J.; Li, H.; Huang, X.: Advanced characterization techniques in promoting mechanism understanding for lithium–sulfur batteries. Adv. Funct. Mater. 28, 1707543 (2018)CrossRefGoogle Scholar
  20. 20.
    Chen, L.; Shaw, L.L.: Recent advances in lithium–sulfur batteries. J. Power Sources 267, 770–783 (2014)CrossRefGoogle Scholar
  21. 21.
    Liu, Y.; He, P.; Zhou, H.: Rechargeable solid-state Li–air and Li–S batteries: materials, construction, and challenges. Adv. Energy Mater. 8, 1701602 (2018)CrossRefGoogle Scholar
  22. 22.
    Gorlin, Y.; Patel, M.U.M.; Freiberg, A.; He, Q.; Piana, M.; Tromp, M.; Gasteiger, H.A.: Understanding the charging mechanism of lithium–sulfur batteries using spatially resolved operando X-ray absorption spectroscopy. J. Electrochem. Soc. 163, A930–A939 (2016)CrossRefGoogle Scholar
  23. 23.
    Zhang, L.; Sun, D.; Feng, J.; Cairns, E.J.; Guo, J.: Revealing the electrochemical charging mechanism of nanosized Li\(_{2}\)S by in situ and operando X-ray absorption spectroscopy. Nano Lett. 17, 5084–5091 (2017)CrossRefGoogle Scholar
  24. 24.
    Gorlin, Y.; Siebel, A.; Piana, M.; Huthwelker, T.; Jha, H.; Monsch, G.; Kraus, F.; Gasteiger, H.A.; Tromp, M.: Operando characterization of intermediates produced in a lithium–sulfur battery. J. Electrochem. Soc. 162, A1146–A1155 (2015)CrossRefGoogle Scholar
  25. 25.
    Zhang, L.; Ling, M.; Feng, J.; Mai, L.; Liu, G.; Guo, J.: The synergetic interaction between LiNO\(_{3}\) and lithium polysulfides for suppressing shuttle effect of lithium–sulfur batteries. Energy Storage Mater. 11, 24 (2018)CrossRefGoogle Scholar
  26. 26.
    Zhu, W.; Paolella, A.; Kim, C.S.; Liu, D.; Feng, Z.; Gagnon, C.; Trottier, J.; Vijh, A.; Guerfi, A.; Mauger, A.; Julien, C.M.; Armand, M.; Zaghib, K.: Investigation of the reaction mechanism of lithium sulfur batteries in different electrolyte systems by in situ Raman spectroscopy and in situ X-ray diffraction. Sustain. Energy Fuels 1, 737–747 (2017)CrossRefGoogle Scholar
  27. 27.
    Saqib, N.; Ohlhausen, G.M.; Porter, J.M.: In operando infrared spectroscopy of lithium polysulfides using a novel spectro-electrochemical cell. J. Power Sources 364, 266–271 (2017)CrossRefGoogle Scholar
  28. 28.
    Sun, Y.; Seh, Z.W.; Li, W.; Yao, H.; Zheng, G.; Cui, Y.: In-operando optical imaging of temporal and spatial distribution of polysulfides in lithium–sulfur batteries. Nano Energy 11, 579–586 (2015)CrossRefGoogle Scholar
  29. 29.
    Patel, M.U.; Arcon, I.; Aquilanti, G.; Stievano, L.; Mali, G.; Dominko, R.: X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium–sulfur battery and its components. Chemphyschem 15, 894–904 (2014)CrossRefGoogle Scholar
  30. 30.
    Vizintin, A.; Chabanne, L.; Tchernychova, E.; Arčon, I.; Stievano, L.; Aquilanti, G.; Antonietti, M.; Fellinger, T.-P.; Dominko, R.: The mechanism of Li\(_{2}\)S activation in lithium–sulfur batteries: can we avoid the polysulfide formation? J. Power Sources 344, 208–217 (2017)CrossRefGoogle Scholar
  31. 31.
    Dominko, R.; Patel, M.U.M.; Lapornik, V.; Vizintin, A.; Koželj, M.; Tušar, N.N.; Arčon, I.; Stievano, L.; Aquilanti, G.: Analytical detection of polysulfides in the presence of adsorption additives by operando X-ray absorption spectroscopy. J. Phys. Cem. C 119, 19001–19010 (2015)CrossRefGoogle Scholar
  32. 32.
    Cuisinier, M.; Hart, C.; Balasubramanian, M.; Garsuch, A.; Nazar, L.F.: Radical or not radical: revisiting lithium–sulfur electrochemistry in nonaqueous electrolytes. Adv. Energy Mater. 5, 1401801 (2015)CrossRefGoogle Scholar
  33. 33.
    Cuisinier, M.; Cabelguen, P.-E.; Evers, S.; He, G.; Kolbeck, M.; Garsuch, A.; Bolin, T.; Balasubramanian, M.; Nazar, L.F.: Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy. J. Phys. Chem. Lett. 4, 3227–3232 (2013)CrossRefGoogle Scholar
  34. 34.
    Yu, X.; Pan, H.; Zhou, Y.; Northrup, P.; Xiao, J.; Bak, S.; Liu, M.; Nam, K.W.; Qu, D.; Liu, J.: Direct observation of the redistribution of sulfur and polysulfides in Li–S batteries during the first cycle by in situ X-ray fluorescence microscopy. Adv. Energy Mater. 5, 1500072 (2015)CrossRefGoogle Scholar
  35. 35.
    Waluś, S.; Barchasz, C.; Bouchet, R.; Leprêtre, J.-C.; Colin, J.-F.; Martin, J.-F.; Elkaïm, E.; Baehtz, C.; Alloin, F.: Lithium/sulfur batteries upon cycling: structural modifications and species quantification by in situ and operando X-ray diffraction spectroscopy. Adv. Energy Mater. 5, 1500165 (2015)CrossRefGoogle Scholar
  36. 36.
    Nelson, J.; Misra, S.; Yang, Y.; Jackson, A.; Liu, Y.; Wang, H.; Dai, H.; Andrews, J.C.; Cui, Y.; Toney, M.F.: In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J. Am. Chem. Soc. 134, 6337–43 (2012)CrossRefGoogle Scholar
  37. 37.
    Yang, Y.; Liu, X.; Dai, Z.; Yuan, F.; Bando, Y.; Golberg, D.; Wang, X.: In situ electrochemistry of rechargeable battery materials: status report and perspectives. Adv. Mater. 29, 1606922 (2017)CrossRefGoogle Scholar
  38. 38.
    Wolf, M.; May, B.M.; Cabana, J.: Visualization of electrochemical reactions in battery materials with X-ray microscopy and mapping. Chem. Mater. 29, 3347–3362 (2017)CrossRefGoogle Scholar
  39. 39.
    Lowe, M.A.; Gao, J.; Abruña, H.D.: Mechanistic insights into operational lithium–sulfur batteries by in situ X-ray diffraction and absorption spectroscopy. RSC Adv. 4, 18347 (2014)CrossRefGoogle Scholar
  40. 40.
    Kim, H.; Lee, J.T.; Magasinski, A.; Zhao, K.; Liu, Y.; Yushin, G.: In situ TEM observation of electrochemical lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes. Adv. Energy Mater. 5, 1501306 (2015)CrossRefGoogle Scholar
  41. 41.
    Yang, Z.; Zhu, Z.; Ma, J.; Xiao, D.; Kui, X.; Yao, Y.; Yu, R.; Wei, X.; Gu, L.; Hu, Y.S.: Phase separation of Li\(_{2}\)S/S at nanoscale during electrochemical lithiation of the solid-state lithium–sulfur battery using in situ TEM. Adv. Energy Mater. 6, 1600806 (2016)CrossRefGoogle Scholar
  42. 42.
    Harks, P.P.R.M.L.; Mulder, F.M.; Notten, P.H.L.: In situ methods for Li–ion battery research: a review of recent developments. J. Power Sources 288, 92–105 (2015)CrossRefGoogle Scholar
  43. 43.
    Paolella, A.; Zhu, W.; Marceau, H.; Kim, C.-S.; Feng, Z.; Liu, D.; Gagnon, C.; Trottier, J.; Abdelbast, G.; Hovington, P.; Vijh, A.; Demopoulos, G.P.; Armand, M.; Zaghib, K.: Transient existence of crystalline lithium disulfide Li\(_{2}\)S\(_{2}\) in a lithium–sulfur battery. J. Power Sources 325, 641–645 (2016)CrossRefGoogle Scholar
  44. 44.
    Lin, F.; Liu, Y.; Yu, X.; Cheng, L.; Singer, A.; Shpyrko, O.G.; Xin, H.L.; Tamura, N.; Tian, C.; Weng, T.C.; Yang, X.Q.; Meng, Y.S.; Nordlund, D.; Yang, W.; Doeff, M.M.: Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem. Rev. 117, 13123 (2017)CrossRefGoogle Scholar
  45. 45.
    Guo, J.: Synchrotron radiation, soft-X-ray spectroscopy and nanomaterials. Int. J. Nanotechnol. 1, 193–225 (2004)CrossRefGoogle Scholar
  46. 46.
    Bak, S.-M.; Shadike, Z.; Lin, R.; Yu, X.; Yang, X.-Q.: In situ/operando synchrotron-based X-ray techniques for lithium–ion battery research. NPG Asia Mater. 10, 563–580 (2018)CrossRefGoogle Scholar
  47. 47.
    Li, Q.; Qiao, R.; Wray, L.A.; Chen, J.; Zhuo, Z.; Chen, Y.; Yan, S.; Pan, F.; Hussain, Z.; Yang, W.: Quantitative probe of the transition metal redox in battery electrodes through soft X-ray absorption spectroscopy. J Phys. D Appl. Phys. 49, 413003 (2016)CrossRefGoogle Scholar
  48. 48.
    Zhang, L.; Ji, L.; Glans, P.A.; Zhang, Y.; Zhu, J.; Guo, J.: Electronic structure and chemical bonding of a graphene oxide–sulfur nanocomposite for use in superior performance lithium–sulfur cells. Phys. Chem. Chem. Phys. 14, 13670–5 (2012)CrossRefGoogle Scholar
  49. 49.
    Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E.J.; Zhang, Y.: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 133, 18522–5 (2011)CrossRefGoogle Scholar
  50. 50.
    Wang, H.; Butorin, S.M.; Young, A.T.; Guo, J.: Nickel oxidation states and spin states of bioinorganic complexes from nickel L-edge X-ray absorption and resonant inelastic X-ray scattering. J. Phys. Cem. C 117, 24767–24772 (2013)CrossRefGoogle Scholar
  51. 51.
    Wujcik, K.H.; Wang, D.R.; Pascal, T.A.; Prendergast, D.; Balsara, N.P.: In situ X-ray absorption spectroscopy studies of discharge reactions in a thick cathode of a lithium sulfur battery. J. Electrochem. Soc. 164, A18–A27 (2017)CrossRefGoogle Scholar
  52. 52.
    Zhao, Q.; Zheng, J.; Archer, L.: Interphases in lithium–sulfur batteries: toward deployable devices with competitive energy density and stability. ACS Energy Lett. 3, 2104–2113 (2018)CrossRefGoogle Scholar
  53. 53.
    Ould Ely, T.; Kamzabek, D.; Chakraborty, D.; Doherty, M.F.: Lithium–sulfur batteries: state of the art and future directions. ACS Appl. Mater. Int. 1, 1783–1814 (2018)Google Scholar
  54. 54.
    Li, M.; Chen, Z.; Wu, T.; Lu, J.: Li\(_{2}\)S- or S-based lithium–ion batteries. Adv. Mater. 30, 1801190 (2018)CrossRefGoogle Scholar
  55. 55.
    Li, M.; Amirzadeh, Z.; De Marco, R.; Tan, X.F.; Whittaker, A.; Huang, X.; Wepf, R.; Knibbe, R.: In situ techniques for developing robust Li–S batteries. Small Methods 2, 1800133 (2018)CrossRefGoogle Scholar
  56. 56.
    Zou, Q.; Lu, Y.C.: Solvent-dictated lithium sulfur redox reactions: an operando UV–Vis spectroscopic study. J. Phys. Chem. Lett. 7, 1518–25 (2016)CrossRefGoogle Scholar
  57. 57.
    Vijayakumar, M.; Govind, N.; Walter, E.; Burton, S.D.; Shukla, A.; Devaraj, A.; Xiao, J.; Liu, J.; Wang, C.; Karim, A.; Thevuthasan, S.: Molecular structure and stability of dissolved lithium polysulfide species. Phys. Chem. Chem. Phys. 16, 10923–32 (2014)CrossRefGoogle Scholar
  58. 58.
    Barchasz, C.; Molton, F.; Duboc, C.; Lepretre, J.C.; Patoux, S.; Alloin, F.: Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal. Chem. 84, 3973–80 (2012)CrossRefGoogle Scholar
  59. 59.
    Sun, D.; Hwa, Y.; Shen, Y.; Huang, Y.; Cairns, E.J.: Li\(_{2}\)S nano spheres anchored to single-layered graphene as a high-performance cathode material for lithium/sulfur Cells. Nano Energy 26, 524–532 (2016)CrossRefGoogle Scholar
  60. 60.
    Nan, C.; Lin, Z.; Liao, H.; Song, M.K.; Li, Y.; Cairns, E.J.: Durable carbon-coated Li\(_{2}\)(S) core-shell spheres for high performance lithium/sulfur cells. J. Am. Chem. Soc. 136, 4659–63 (2014)CrossRefGoogle Scholar
  61. 61.
    Cai, K.; Song, M.K.; Cairns, E.J.; Zhang, Y.: Nanostructured Li\(_{(2)}\)S–C composites as cathode material for high-energy lithium/sulfur batteries. Nano Lett. 12, 6474–9 (2012)CrossRefGoogle Scholar
  62. 62.
    Zhou, G.; Tian, H.; Jin, Y.; Tao, X.; Liu, B.; Zhang, R.; Seh, Z.W.; Zhuo, D.; Liu, Y.; Sun, J.; Zhao, J.; Zu, C.; Wu, D.S.; Zhang, Q.; Cui, Y.: Catalytic oxidation of Li\(_{2}\)S on the surface of metal sulfides for Li–S batteries. Proc. Natl. Acad. Sci. 114, 840–845 (2017)CrossRefGoogle Scholar
  63. 63.
    Zhou, G.; Sun, J.; Jin, Y.; Chen, W.; Zu, C.; Zhang, R.; Qiu, Y.; Zhao, J.; Zhuo, D.; Liu, Y.; Tao, X.; Liu, W.; Yan, K.; Lee, H.R.; Cui, Y.: Sulfiphilic nickel phosphosulfide enabled Li\(_{2}\) S impregnation in 3D graphene cages for Li–S batteries. Adv. Mater. 29, 1603366 (2017)CrossRefGoogle Scholar
  64. 64.
    Wang, L.; Wang, Y.; Xia, Y.: A high performance lithium-ion sulfur battery based on a Li\(_{2}\)S cathode using a dual-phase electrolyte. Energy Environ. Sci. 8, 1551–1558 (2015)CrossRefGoogle Scholar
  65. 65.
    Yang, Y.; Zheng, G.; Misra, S.; Nelson, J.; Toney, M.F.; Cui, Y.: High-capacity micrometer-sized Li\(_{2}\)S particles as cathode materials for advanced rechargeable lithium–ion batteries. J. Am. Chem. Soc. 134, 15387–94 (2012)CrossRefGoogle Scholar
  66. 66.
    Hwa, Y.; Zhao, J.; Cairns, E.J.: Lithium sulfide (Li\(_{2}\)S)/graphene oxide nanospheres with conformal carbon coating as a high-rate, long-life cathode for Li/S cells. Nano Lett. 15, 3479–86 (2015)CrossRefGoogle Scholar
  67. 67.
    Qiu, Y.; Rong, G.; Yang, J.; Li, G.; Ma, S.; Wang, X.; Pan, Z.; Hou, Y.; Liu, M.; Ye, F.; Li, W.; Seh, Z.W.; Tao, X.; Yao, H.; Liu, N.; Zhang, R.; Zhou, G.; Wang, J.; Fan, S.; Cui, Y.; Zhang, Y.: Highly nitridated graphene-Li\(_{2}\)S cathodes with stable modulated cycles. Adv. Energy Mater. 5, 1501369 (2015)CrossRefGoogle Scholar
  68. 68.
    Son, Y.; Lee, J.-S.; Son, Y.; Jang, J.-H.; Cho, J.: Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater. 5, 1500110 (2015)CrossRefGoogle Scholar
  69. 69.
    Tan, G.; Xu, R.; Xing, Z.; Yuan, Y.; Lu, J.; Wen, J.; Liu, C.; Ma, L.; Zhan, C.; Liu, Q.; Wu, T.; Jian, Z.; Shahbazian-Yassar, R.; Ren, Y.; Miller, D.J.; Curtiss, L.A.; Ji, X.; Amine, K.: Burning lithium in CS\(_{2}\) for high-performing compact Li\(_{2}\)S-graphene nanocapsules for Li–S batteries. Nature Energy 2, 17090 (2017)CrossRefGoogle Scholar
  70. 70.
    Ai, G.; Dai, Y.; Mao, W.; Zhao, H.; Fu, Y.; Song, X.; En, Y.; Battaglia, V.S.; Srinivasan, V.; Liu, G.: Biomimetic ant-nest electrode structures for high sulfur ratio lithium–sulfur batteries. Nano Lett. 16, 5365–72 (2016)CrossRefGoogle Scholar
  71. 71.
    Ai, G.; Dai, Y.; Ye, Y.; Mao, W.; Wang, Z.; Zhao, H.; Chen, Y.; Zhu, J.; Fu, Y.; Battaglia, V.; Guo, J.; Srinivasan, V.; Liu, G.: Investigation of surface effects through the application of the functional binders in lithium sulfur batteries. Nano Energy 16, 28–37 (2015)CrossRefGoogle Scholar
  72. 72.
    Li, H.; Yang, X.; Wang, X.; Liu, M.; Ye, F.; Wang, J.; Qiu, Y.; Li, W.; Zhang, Y.: Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode. Nano Energy 12, 468–475 (2015)CrossRefGoogle Scholar
  73. 73.
    Wang, H.; Yang, Y.; Liang, Y.; Robinson, J.T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H.: Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–7 (2011)CrossRefGoogle Scholar
  74. 74.
    Song, J.; Gordin, M.L.; Xu, T.; Chen, S.; Yu, Z.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y.; Wang, D.: Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes. Angew. Chem. Int. Ed. 54, 4325–9 (2015)CrossRefGoogle Scholar
  75. 75.
    Li, W.; Zhang, Q.; Zheng, G.; Seh, Z.W.; Yao, H.; Cui, Y.: Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett. 13, 5534–40 (2013)CrossRefGoogle Scholar
  76. 76.
    Chen, W.; Qian, T.; Xiong, J.; Xu, N.; Liu, X.; Liu, J.; Zhou, J.; Shen, X.; Yang, T.; Chen, Y.; Yan, C.: A new type of multifunctional polar binder: toward practical application of high energy lithium sulfur batteries. Adv. Mater. 29, 1605160 (2017)CrossRefGoogle Scholar
  77. 77.
    Wang, J.; Yao, Z.; Monroe, C.W.; Yang, J.; Nuli, Y.: Carbonyl-\(\beta \)-cyclodextrin as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Adv. Funct. Mater. 23, 1194–1201 (2013)CrossRefGoogle Scholar
  78. 78.
    Milroy, C.; Manthiram, A.: An elastic, conductive, electroactive nanocomposite binder for flexible sulfur cathodes in lithium–sulfur batteries. Adv. Mater. 28, 9744–9751 (2016)CrossRefGoogle Scholar
  79. 79.
    Seh, Z.W.; Zhang, Q.; Li, W.; Zheng, G.; Yao, H.; Cui, Y.: Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chem. Sci. 4, 3673 (2013)CrossRefGoogle Scholar
  80. 80.
    Chen, C.Y.; Peng, H.J.; Hou, T.Z.; Zhai, P.Y.; Li, B.Q.; Tang, C.; Zhu, W.; Huang, J.Q.; Zhang, Q.: A quinonoid-imine-enriched nanostructured polymer mediator for lithium–sulfur batteries. Adv. Mater. 29, 1606802 (2017)CrossRefGoogle Scholar
  81. 81.
    Li, G.; Ling, M.; Ye, Y.; Li, Z.; Guo, J.; Yao, Y.; Zhu, J.; Lin, Z.; Zhang, S.: Acacia senegal-inspired bifunctional binder for longevity of lithium–sulfur batteries. Adv. Energy Mater. 5, 1500878 (2015)CrossRefGoogle Scholar
  82. 82.
    Ling, M.; Zhang, L.; Zheng, T.; Feng, J.; Guo, J.; Mai, L.; Liu, G.: Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery. Nano Energy 38, 82–90 (2017)CrossRefGoogle Scholar
  83. 83.
    Zhang, L.; Ling, M.; Feng, J.; Liu, G.; Guo, J.: Effective electrostatic confinement of polysulfides in lithium/sulfur batteries by a functional binder. Nano Energy 40, 559 (2017)CrossRefGoogle Scholar
  84. 84.
    Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Kelley, C.S.; Affinito, J.: On the surface chemical aspects of very high energy density rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694 (2009)CrossRefGoogle Scholar
  85. 85.
    Cheng, X.B.; Zhang, R.; Zhao, C.Z.; Wei, F.; Zhang, J.G.; Zhang, Q.: A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016)CrossRefGoogle Scholar
  86. 86.
    Zhang, S.S.; Read, J.A.: A new direction for the performance improvement of rechargeable lithium/sulfur batteries. J. Power Sources 200, 77–82 (2012)CrossRefGoogle Scholar
  87. 87.
    Liang, X.; Wen, Z.; Liu, Y.; Wu, M.; Jin, J.; Zhang, H.; Wu, X.: Improved cycling performances of lithium sulfur batteries with LiNO\(_{3}\)-modified electrolyte. J. Power Sources 196, 9839–9843 (2011)CrossRefGoogle Scholar
  88. 88.
    Zhang, S.S.: A new finding on the role of LiNO\(_{3}\) in lithium–sulfur battery. J. Power Sources 322, 99–105 (2016)CrossRefGoogle Scholar
  89. 89.
    Zhang, S.S.: Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO\(_{3}\)-contained electrolyte. J. Electrochem. Soc. 159, A920–A923 (2012)CrossRefGoogle Scholar
  90. 90.
    Zhang, S.S.: Role of LiNO\(_{3}\) in rechargeable lithium/sulfur battery. Electrochim. Acta 70, 344–348 (2012)CrossRefGoogle Scholar
  91. 91.
    Xiong, S.; Xie, K.; Diao, Y.; Hong, X.: Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries. J. Power Sources 246, 840–845 (2014)CrossRefGoogle Scholar
  92. 92.
    Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y.M.; Cui, Y.: The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nature Commun. 6, 7436 (2015)CrossRefGoogle Scholar
  93. 93.
    Xiong, S.; Xie, K.; Diao, Y.; Hong, X.: On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium–sulfur batteries. J. Power Sources 236, 181–187 (2013)CrossRefGoogle Scholar
  94. 94.
    Xiong, S.; Xie, K.; Diao, Y.; Hong, X.: Properties of surface film on lithium anode with LiNO\(_{3}\) as lithium salt in electrolyte solution for lithium–sulfur batteries. Electrochim. Acta 83, 78–86 (2012)CrossRefGoogle Scholar
  95. 95.
    Zhao, C.-Z.; Cheng, X.-B.; Zhang, R.; Peng, H.-J.; Huang, J.-Q.; Ran, R.; Huang, Z.-H.; Wei, F.; Zhang, Q.: Li\(_{2}\)S\(_{5}\)-based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Mater. 3, 77–84 (2016)CrossRefGoogle Scholar
  96. 96.
    Jozwiuk, A.; Berkes, B.B.; Weiß, T.; Sommer, H.; Janek, J.; Brezesinski, T.: The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries. Energy Environ. Sci. 9, 2603–2608 (2016)CrossRefGoogle Scholar
  97. 97.
    Yan, C.; Cheng, X.-B.; Zhao, C.-Z.; Huang, J.-Q.; Yang, S.-T.; Zhang, Q.: Lithium metal protection through in-situ formed solid electrolyte interphase in lithium–sulfur batteries: the role of polysulfides on lithium anode. J. Power Sources 327, 212–220 (2016)CrossRefGoogle Scholar
  98. 98.
    Eberhardt, W.: Synchrotron radiation: a continuing revolution in X-ray science-diffraction limited storage rings and beyond. J. Electron. Spectrosc. Relat. Phenom. 200, 31–39 (2015)CrossRefGoogle Scholar
  99. 99.
    Hettel, R.: DLSR design and plans: an international overview. J. Synchrotron Radiat. 21, 843–55 (2014)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Advanced Light SourceLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations