An Efficient Grey Wolf Optimizer with Opposition-Based Learning and Chaotic Local Search for Integer and Mixed-Integer Optimization Problems

  • Shubham GuptaEmail author
  • Kusum Deep
Research Article - Systems Engineering


Determining the global optima of integer and mixed-integer nonlinear problems is a useful contribution in various engineering applications. Swarm intelligence is a well-known branch of nature-inspired algorithms which tries to determine the solution with the help of intelligent and collective behaviour of social creatures. Grey wolf optimizer (GWO) is one of the recently developed efficient algorithms which are quite popular nowadays. In the present study, first, the GWO is proposed for solving integer and mixed-integer optimization problems, and secondly, an improved version of GWO named IMI-GWO is proposed. The IMI-GWO attempts to alleviate from the major issues of premature convergence and slow convergence of classical GWO. In IMI-GWO, the opposition-based learning maintains the diversity and the chaotic search locally exploits the regions around the best solutions. To evaluate the performance of IMI-GWO, a set of 16 integer and mixed-integer problems and two engineering application problems, namely gear train and pressure vessel design problems, have been considered. The performance of the IMI-GWO is compared with other algorithms which are applied to solve these problems in the literature and with some recent algorithms. The comparison illustrates the better performance of the proposed algorithm.


Swarm intelligence Grey wolf optimizer Integer and mixed-integer optimization problems Opposition-based learning Chaotic local search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The first author would like to thank the Ministry of Human Resources, Government of India, for funding this research (Grant No. MHR-02-41-113-429).


  1. 1.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992)Google Scholar
  2. 2.
    Storn, R.; Price, K.: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Eberhart, R.; Kennedy, J.: A new optimizer using particle swarm theory. In: Micro Machine and Human Science, 1995. MHS’95. In: Proceedings of the Sixth International Symposium on (pp. 39–43). IEEE (1995)Google Scholar
  4. 4.
    Glover, F.: Tabu search—part I. ORSA J. Comput. 1(3), 190–206 (1989)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Basturk, B.: An artificial bee colony (ABC) algorithm for numeric function optimization. In: IEEE Swarm Intelligence Symposium, Indianapolis, p. 2006 (2006)Google Scholar
  6. 6.
    Dorigo, M.; Birattari, M.; Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)Google Scholar
  7. 7.
    Črepinšek, M.; Liu, S.H.; Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45(3), 35 (2013)zbMATHGoogle Scholar
  8. 8.
    Wolpert, D.H.; Macready, W.G.: No free lunch theorems for search (Vol. 10). Technical Report SFI-TR-95-02-010, Santa Fe Institute. (1995)Google Scholar
  9. 9.
    Mirjalili, S.; Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)Google Scholar
  10. 10.
    Bansal, J.C.; Sharma, H.; Jadon, S.S.; Clerc, M.: Spider monkey optimization algorithm for numerical optimization. Memet. Comput. 6(1), 31–47 (2014)Google Scholar
  11. 11.
    Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)Google Scholar
  12. 12.
    Costa, L.; Oliveira, P.: Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems. Comput. Chem. Eng. 25(2), 257–266 (2001)Google Scholar
  13. 13.
    Li, Y.X.; Gen, M.: Nonlinear mixed integer programming problems using genetic algorithm and penalty function. In: Systems, Man, and Cybernetics, 1996., IEEE International Conference on (Vol. 4, pp. 2677–2682). IEEE (1996)Google Scholar
  14. 14.
    Tan, Y.; Tan, G.Z.; Deng, S.G.: Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems. J. Central South Univ. 21(7), 2731–2742 (2014)Google Scholar
  15. 15.
    Laarhoven, P.J.M.V.; Peter, J.M.; Aarts, E.H.L.: Simulated annealing. In: Simulated Annealing: Theory and Applications, pp. 7–15. Springer, Netherlands (1987)Google Scholar
  16. 16.
    Cardoso, M.F.; Salcedo, R.L.; de Azevedo, S.F.; Barbosa, D.: A simulated annealing approach to the solution of MINLP problems. Comput. Chem. Eng. 21(12), 1349–1364 (1997)Google Scholar
  17. 17.
    Mohan, C.; Nguyen, H.T.: A controlled random search technique incorporating the simulated annealing concept for solving integer and mixed integer global optimization problems. Comput. Optim. Appl. 14(1), 103–132 (1999)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Deep, K.; Singh, K.P.; Kansal, M.L.; Mohan, C.: A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl. Math. Comput. 212(2), 505–518 (2009)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Jayakumar, N.; Subramanian, S.; Ganesan, S.; Elanchezhian, E.B.: Grey wolf optimization for combined heat and power dispatch with cogeneration systems. Int. J. Electr. Power Energy Syst. 74, 252–264 (2016)Google Scholar
  20. 20.
    Song, H.M.; Sulaiman, M.H.; Mohamed, M.R.: An application of grey wolf optimizer for solving combined economic emission dispatch problems. Int. Rev. Model. Simul. 7(5), 838–844 (2014)Google Scholar
  21. 21.
    Komaki, G.M.; Kayvanfar, V.: Grey Wolf optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time. J. Comput. Sci. 8, 109–120 (2015)Google Scholar
  22. 22.
    Muangkote, N.; Sunat, K.; Chiewchanwattana, S.: An improved grey wolf optimizer for training q-Gaussian Radial Basis Functional-link nets. In: Computer Science and Engineering Conference (ICSEC), 2014 International, pp. 209-214. IEEE (2014)Google Scholar
  23. 23.
    Kamboj, V.K.; Bath, S.K.; Dhillon, J.S.: Solution of non-convex economic load dispatch problem using Grey Wolf Optimizer. Neural Comput. Appl. 27(5), 1301–1316 (2016)Google Scholar
  24. 24.
    Sulaiman, M.H.; Mustaffa, Z.; Mohamed, M.R.; Aliman, O.: Using the gray wolf optimizer for solving optimal reactive power dispatch problem. Appl. Soft Comput. 32, 286–292 (2015)Google Scholar
  25. 25.
    Mittal, N.; Singh, U.; Sohi, B.S.: Modified grey wolf optimizer for global engineering optimization. Appl. Comput. Intell. Soft Comput. 2016, 8 (2016)Google Scholar
  26. 26.
    Heidari, A.A.; Pahlavani, P.: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks. Appl. Soft Comput. 60, 115–134 (2017)Google Scholar
  27. 27.
    Gupta, S.; Deep, K.: A novel random walk grey wolf optimizer. Swarm Evol. Comput. 44, 101–112 (2018)Google Scholar
  28. 28.
    Gupta, S.; Deep, K.: Random walk grey wolf optimizer for constrained engineering optimization problems. Comput. Intell. 34(4), 1025–1045 (2018)MathSciNetGoogle Scholar
  29. 29.
    Long, W.; Jiao, J.; Liang, X.; Tang, M.: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Eng. Appl. Artif. Intell. 68, 63–80 (2018)Google Scholar
  30. 30.
    Tawhid, M.A.; Ali, A.F.: A Hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function. Memet. Comput. 9(4), 347–359 (2017)Google Scholar
  31. 31.
    Abed-alguni, B.H.; Barhoush, M.: Distributed grey wolf optimizer for numerical optimization problems. Jordan. J. Comput. Inf. Technol. 4, 130–149 (2018)Google Scholar
  32. 32.
    Gupta, S.; Deep, K.: An opposition based chaotic grey wolf optimizer for global optimization tasks. J. Exp. Theor. Artif. Intell. (2018). Google Scholar
  33. 33.
    Muro, C.; Escobedo, R.; Spector, L.; Coppinger, R.P.: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav. Process. 88(3), 192–197 (2011)Google Scholar
  34. 34.
    Tizhoosh, H.R.: Opposition-based learning: a new scheme for machine intelligence. In: Computational Intelligence for Modelling, Control and Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, International Conference on (Vol. 1, pp. 695-701). IEEE (2005)Google Scholar
  35. 35.
    Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.: Opposition versus randomness in soft computing techniques. Appl. Soft Comput. 8(2), 906–918 (2008)Google Scholar
  36. 36.
    Guo, Z.; Huang, H.; Deng, C.; Yue, X.; Wu, Z.: An enhanced differential evolution with elite chaotic local search. Comput. Intell. Neurosci. 2015, 6 (2015)Google Scholar
  37. 37.
    Jia, D.; Zheng, G.; Khan, M.K.: An effective memetic differential evolution algorithm based on chaotic local search. Inf. Sci. 181(15), 3175–3187 (2011)Google Scholar
  38. 38.
    Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2), 311–338 (2000)zbMATHGoogle Scholar
  39. 39.
    Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)Google Scholar
  40. 40.
    Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)Google Scholar
  41. 41.
    Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)Google Scholar
  42. 42.
    Barr, R.S.; Golden, B.L.; Kelly, J.P.; Resende, M.G.; Stewart, W.R.: Designing and reporting on computational experiments with heuristic methods. J. Heuristics 1(1), 9–32 (1995)zbMATHGoogle Scholar
  43. 43.
    Derrac, J.; García, S.; Molina, D.; Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)Google Scholar
  44. 44.
    Bharti: Controlled Random Search Techniques and Their Applications. Ph.D. Thesis. Department of Mathematics, University of Roorkee, India (1994)Google Scholar
  45. 45.
    Gandomi, A.H.: Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans. 53(4), 1168–1183 (2014)Google Scholar
  46. 46.
    Sandgren, E.: Nonlinear integer and discrete programming in mechanical design optimization. J. Mech. Des. 112(2), 223–229 (1990)Google Scholar
  47. 47.
    Gandomi, A.H.; Yang, X.S.; Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)Google Scholar
  48. 48.
    Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–2612 (2013)Google Scholar
  49. 49.
    Sharma, T.K.; Pant, M.; Singh, V.P.: Improved local search in artificial bee colony using golden section search (2012) arXiv preprint arXiv:1210.6128
  50. 50.
    Deb, K.; Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inform. 26, 30–45 (1996)Google Scholar
  51. 51.
    Kannan, B.K.; Kramer, S.N.: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 116(2), 405–411 (1994)Google Scholar
  52. 52.
    Gupta, S.; Deep, K.: Cauchy Grey Wolf Optimiser for continuous optimisation problems. J. Exp. Theor. Artif. Intell. 30(6), 1051–1075 (2018)Google Scholar
  53. 53.
    Sandgren, E.: Nonlinear integer and discrete programming in mechanical design. In: Proceedings of the ASME Design Technology Conference (pp. 95–105) (1988)Google Scholar
  54. 54.
    He, Q.; Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 20(1), 89–99 (2007)Google Scholar
  55. 55.
    Coello, C.A.C.; Montes, E.M.: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv. Eng. Inform. 16(3), 193–203 (2002)Google Scholar
  56. 56.
    Deb, K.: GeneAS: a robust optimal design technique for mechanical component design. In: Evolutionary Algorithms in Engineering Applications (pp. 497–514). Springer, Berlin (1997)Google Scholar
  57. 57.
    He, Q.; Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 20(1), 89–99 (2007)Google Scholar
  58. 58.
    Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)zbMATHGoogle Scholar
  59. 59.
    Kocis, G.R.; Grossmann, I.E.: Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis. Ind. Eng. Chem. Res. 27(8), 1407–1421 (1988)Google Scholar
  60. 60.
    Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  61. 61.
    Nguyen, H.T.: Some global optimization techniques and their use in solving optimization problems in crisp and fuzzy environments (Doctoral dissertation. Department of Mathematics, Ph.D. Thesis, University of Roorkee, Roorkee, India) (1996)Google Scholar
  62. 62.
    Yuan, X.; Zhang, S.; Pibouleau, L.; Domenech, S.: Une méthode d’optimisation non linéaire en variables mixtes pour la conception de procédés. RAIRO-Oper. Res. 22(4), 331–346 (1988)zbMATHGoogle Scholar
  63. 63.
    Berman, O.; Ashrafi, N.: Optimization models for reliability of modular software systems. IEEE Trans. Softw. Eng. 19(11), 1119–1123 (1993)Google Scholar
  64. 64.
    Salkin, H.M.: Integer Programming. Eddison Wesley Publishing Com, Amsterdam (1975)zbMATHGoogle Scholar
  65. 65.
    Bazaraa, M.S.; Sherali, H.D.; Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, London (2013)zbMATHGoogle Scholar
  66. 66.
    Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill Companies, New York (1972)zbMATHGoogle Scholar
  67. 67.
    Conley, W.: Computer Optimization Techniques. Petrocelli Books, New Jersy (1984)zbMATHGoogle Scholar
  68. 68.
    Dhingra, A.K.: Optimal apportionment of reliability and redundancy in series systems under multiple objectives. IEEE Trans. Reliab. 41(4), 576–582 (1992)zbMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations