Study of Ultra-High-Vacuum Properties of Carbon-Coated Stainless Steel Beam Pipes for High-Energy Particle Accelerators

  • Afshan AshrafEmail author
  • Mazhar Mehmood
  • Sohail Ahmad Janjua
Research Article - Physics


Ultra-high vacuum (UHV) in high-energy particle accelerator is essential to ensure the required beam lifetime. In the present communication, the UHV characterization of vacuum chambers coated with a thin film of carbon is reported. Recently, such coatings have attracted the interest for their low secondary electron yield and, consequently, their capability to eradicate electron cloud in high-intensity proton beam accelerators. Carbon was coated on stainless steel beam pipes by magnetron sputtering. Coated and uncoated stainless steel pipes (\(\hbox {C}_{\mathrm{ssp}}\) and \(\hbox {UC}_{\mathrm{ssp}}\)) were compared based on their outgassing rates and electron-stimulated desorption yields. The study conclusively verified that magnetron-sputtered carbon coatings are compatible with the requirements of most of the modern particle accelerators.


Carbon coatings Electron cloud Ultra-high vacuum Outgassing Electron-stimulated desorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge Pedro Costa Pinto from VSC, CERN (Switzerland), for providing coated samples, and Ivo Wevers from CERN for providing all the technical facility for characterization. The authors would like to express their special thanks to Paolo Chiggiato for supervising the work under his technical guidance. Funding was provided by Pakistan Atomic Energy Commission and Higher Education Commision, Pakistan.


  1. 1.
    Hilleret, N.: Non-thermal outgassing. In: Proceedings CERN Accelerator School—Vacuum in Accelerators, Platja d’Aro, Spain (2006)Google Scholar
  2. 2.
    Baglin, V.; Bregliozzi, G.; Jimenez, J.M.; Lanza, G.: Vacuum performances and lessons for 2012. In: Proceedings of Chamonix 2012 Workshop on LHC Performance (2012)Google Scholar
  3. 3.
    Redhead, P.A.; Hobson, J.P.; Kornelsen, E.V.: The Physical Basis of Ultra-High Vacuum. Barnes and Noble, New York (1968)Google Scholar
  4. 4.
    Jousten, K. (ed.): Thermal outgassing. In: CAS-CERN Accelerator School—Vacuum Technology. Snekersten, Denmark, CERN 1999-05 (1999)Google Scholar
  5. 5.
    Lafferty, J.M. (ed.): Foundations of Vacuum Science and Technology. Wiley, New York (1998)Google Scholar
  6. 6.
    Roth, A.: Vacuum Technology, 3rd edn. Elsevier, Amsterdam (1990)Google Scholar
  7. 7.
    Chao, A.W.; Tigner, M.: Handbook of Accelerator Physics and Engineering. World Scientific, Singapore (1998)Google Scholar
  8. 8.
    Rumolo, G.; Iadarola, G.: Electron clouds. In: Proceedings of the CAS-CERN Accelerator School—Intensity Limitations in Particle Beams, Switzerland, Geneva (2015)Google Scholar
  9. 9.
    Ohmi, K.: Beam-photoelectron interactions in positron storage rings. Phys. Rev. Lett. 75(8), 1526–1529 (1995)CrossRefGoogle Scholar
  10. 10.
    Cimino, R.; Demma, T.: Electron cloud in accelerators. Int. J. Mod. Phys. A 29(17), 1430023 (2014)CrossRefGoogle Scholar
  11. 11.
    Baconnier, Y. et al.: A Tau-Charm Factory Laboratory in Spain combined with a synchrotron light source—a conceptual study. CERN/AC 90-07, pp. 219–221 (1990)Google Scholar
  12. 12.
    Claudet, S.; Lebrun, P.; Serio, L.; Tavian, L.; van Weelderen, R.; Wagner, U.: Cryogenic heat load and refrigeration capacity management at the Large Hadron Collider (LHC). LHC Project Report 1171, pp. 1–6 (2008)Google Scholar
  13. 13.
    Calatroni, S.; Chiggiato, P.; Pinto, P.C.; Hynds, D.; Taborelli, M.; Vallgren, C.Y.: Amorphous-carbon thin films for the mitigation of electron clouds in particle accelerators. Final CARE-HHH Workshop on Scenarios for the LHC Upgrade and FAIR, Chavannes-de-Bogis, Switzerland, pp. 128–132 (2008)Google Scholar
  14. 14.
    Vallgren, C.Y.; Ashraf, A.; Calatroni, S.; Chiggiato, P.; Pinto, P.C.; Marques, H.P.; Neupert, H.; Taborelli, M.; Vollenberg, W.; Wevers, I.; Yaqub, K.: Low secondary electron yield carbon coatings for electron cloud mitigation in modern particle accelerators. In: Proceedings of IPAC’ 10, Kyoto, Japan, WEOAMH03 (2010)Google Scholar
  15. 15.
    Li, M.; Dylla, H.F.: Model for the outgassing of water from metal surfaces. J. Vac. Sci. Technol. A 11, 1702–1707 (1993)CrossRefGoogle Scholar
  16. 16.
    Li, M.; Dylla, H.F.: Model for the outgassing of water from metal surfaces. II. J. Vac. Sci. Technol. A 12, 1772–1777 (1994)CrossRefGoogle Scholar
  17. 17.
    Li, M.; Dylla, H.F.: Model for the outgassing of water from metal surfaces (III). J. Vac. Sci. Technol. A 12, 1872–1878 (1995)CrossRefGoogle Scholar
  18. 18.
    Avdiaj, S.; Erjavec, B.: Outgassing of hydrogen from a stainless steel vacuum chamber. Mater. Technol. 46(2), 161–167 (2012)Google Scholar
  19. 19.
    Benvenuti, C.; Chiggiato, P.; Cicoira, F.; L’Aminot, Y.: Nonevaporable getter films for ultrahigh vacuum applications. J. Vac. Technol. A 16(1), 148–154 (1998)CrossRefGoogle Scholar
  20. 20.
    Edwards, D.: Upper bound to the pressure in an elementary vacuum system. J. Vac. Sci. Technol. 14(1), 606–610 (1977)CrossRefGoogle Scholar
  21. 21.
    Edwards, D.: An upper bound to the outgassing rate of metal surfaces. J. Vac. Sci. Technol. 14(4), 1030–1032 (1977)CrossRefGoogle Scholar
  22. 22.
    Dai, W.; Kim, S.J.; Seong, W.K.; Kim, S.H.; Lee, K.R.; Kim, H.Y.; Moon, M.W.: Porous carbon nanoparticle networks with tunable absorbability. Sci. Rep. 3, 2524 (2013)CrossRefGoogle Scholar
  23. 23.
    Kato, S.; Oyama, H.; Odagiri, H.: Surface modification of vacuum wall by carbon and its outgassing. Vacuum 41(7–9), 1998–2000 (1990)CrossRefGoogle Scholar
  24. 24.
    Hwang, J.; Ihm, J.; Lee, K.R.; Kim, S.: Computational evaluation of amorphous carbon coating for durable silicon anodes for lithium-ion batteries. Nanomaterials 5, 1654–1666 (2015)CrossRefGoogle Scholar
  25. 25.
    Rossi, F.; André, B.; van Veen, A.; Mijnarends, P.E.; Schut, H.; Delplancke, M.P.; Gissler, W.; Haupt, J.; Lucazeau, G.; Abello, L.: Effect of ion beam assistance on the microstructure of nonhydrogenated amorphous carbon. J. Appl. Phys. 75(6), 3121–3129 (1994)CrossRefGoogle Scholar
  26. 26.
    Grinham, R.; Chew, D.A.: A review of outgassing and methods for its reduction. Appl. Sci. Converg. Technol. 26(5), 95–109 (2017)CrossRefGoogle Scholar
  27. 27.
    Wyon, C.; Gillet, R.; Lombard, L.: Properties of amorphous carbon films produced by magnetron sputtering. Thin Solid Films 122, 203–216 (1984)CrossRefGoogle Scholar
  28. 28.
    Madey, T.E.; Yates Jr., J.T.: Electron-stimulated desorption as a tool for studies of chemisorption: a review. J. Vac. Sci. Technol. 8(4), 525–555 (1971)CrossRefGoogle Scholar
  29. 29.
    Malyshev, O.B.; Jones, R.M.A.; Hogan, B.T.; Hannah, A.: Electron stimulated desorption from the 316L stainless steel as a function of impact electron energy. J. Vac. Sci. Technol. A 31, 031601 (2013)CrossRefGoogle Scholar
  30. 30.
    Ady, M.; Chiggiato, P.; Kersevan, R.; Tanimoto, Y.; Honda, T.: Photodesorption and electron yield measurements of thin film coatings for future accelerators. In: Proceedings of IPAC, Richmond, VA, USA, WEPHA011, p. 3123 (2015)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  • Afshan Ashraf
    • 1
    • 2
    Email author
  • Mazhar Mehmood
    • 2
  • Sohail Ahmad Janjua
    • 1
  1. 1.LINACPPINSTECHIslamabadPakistan
  2. 2.Pakistan Institute of Engineering and Applied Sciences (PIEAS)IslamabadPakistan

Personalised recommendations