Catalytic Efficiency of Cu-Supported Pyrophyllite in Heterogeneous Catalytic Oxidation of Phenol

  • A. El GaidoumiEmail author
  • J. M. Doña-Rodríguez
  • E. Pulido Melián
  • O. M. González-Díaz
  • J. A. Navío
  • B. El Bali
  • A. Kherbeche
Research Article - Chemistry


The copper-impregnated pyrophyllite (Cu/RC) was prepared and used as catalyst in catalytic wet peroxide oxidation (CWPO) of phenol. The catalyst was prepared by impregnation of copper (2.5 wt%) into pyrophyllite-type clay and characterized by X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The optimum operation conditions for CWPO of phenol over Cu/RC were determined by investigating the effects of pH, temperature, catalyst amount, and hydrogen peroxide concentration. Stability of the Cu/RC catalyst and toxicity of treated solution were studied, by measuring the copper concentration leached out from the catalyst and the inhibition of Vibrio fischeri bacteria bioluminescence, respectively. The probable degradation mechanism of phenol over Cu/RC was considered by HPLC analysis. The obtained results showed that Cu/RC achieved highest activity (total phenol degradation and 80% TOC reduction) and detoxification with remarkable low copper leaching concentration (0.006 \(\hbox {mg\,L}^{-1})\) at optimized conditions (pH \(=\) 3, \(T = 50\,{^{\circ }}\)C, 2 \(\hbox {g\,L}^{-1}\) catalyst amount, 50 mg \(\hbox {L}^{-1}\) phenol concentration and 7.45 \(\hbox {mmol\,L}^{-1}\) hydrogen peroxide concentration during 4 h). Meanwhile, few intermediates with low concentration were observed by the HPLC analysis for the CWPO of phenol. The Cu/RC catalyst showed a good activity after five successive runs (88% of degradation and 73% mineralization) at optimized conditions.


Heterogeneous catalysis Phenol Copper Catalyst Impregnated pyrophyllite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Abdelali El Gaidoumi thanks ERASMUS PLUS KA 107 Program for supporting his mobility at Las Palmas de Gran Canaria University (Spain), the Innovation Center of Sidi Mohamed Ben Abdellah University (CI-Fez, Morocco) for XRD and FTIR analyzes and the National Center for Scientific and Technical Research (CNRST-Rabat, Morocco) for XRF and TEM analyzes.


  1. 1.
    Ayodele, O.B.; Lim, J.K.; Hameed, B.H.: Degradation of phenol in photo-Fenton process by phosphoric acid modified kaolin supported ferric-oxalate catalyst: optimization and kinetic modeling. Chem. Eng. J. 197, 181–192 (2012)CrossRefGoogle Scholar
  2. 2.
    Zhou, S.; Qian, Z.; Sun, T.; Xu, J.; Xia, C.: Catalytic wet peroxide oxidation of phenol over Cu-Ni-Al hydrotalcite. Appl. Clay Sci. 53, 627–633 (2011)CrossRefGoogle Scholar
  3. 3.
    Zhang, M.; Zhi, L.; Li, H.; Long, H.; Zhao, W.: Process integration of halogenation and oxidation for recovery and removal of phenols from high strength phenolic wastewater. Chem. Eng. J. 229, 99–104 (2013)CrossRefGoogle Scholar
  4. 4.
    Annachhatre, A.P.; Gheewala, S.H.: Biodegradation of chlorinated phenolic compounds. Biotechnol. Adv. 14, 35–56 (1996)CrossRefGoogle Scholar
  5. 5.
    Bui, T.X.; Kang, S.Y.; Lee, S.H.; Choi, H.: Organically functionalized mesoporous SBA-15 as sorbents for removal of selected pharmaceuticals from water. J. Hazard. Mater. 193, 156–163 (2011)CrossRefGoogle Scholar
  6. 6.
    Huang, D.L.; Wang, R.Z.; Liu, Y.G.; Zeng, G.M.; Lai, C.; Xu, P.; Lu, B.A.; Xu, J.J.; Wang, C.; Huang, C.: Application of molecularly imprinted polymers in wastewater treatment: a review. Environ. Sci. Pollut. Res. Int. 22, 963–977 (2015)CrossRefGoogle Scholar
  7. 7.
    Rzeszutek, K.; Chow, A.: Extraction of phenols using polyurethane membrane. Talanta 46, 507–519 (1998)CrossRefGoogle Scholar
  8. 8.
    Botas, J.A.; Melero, J.A.; Martínez, F.; Pariente, M.I.: Assessment of \(\text{ Fe }_{2}\text{ O }_{3}/\text{ SiO }_{2}\) catalysts for the continuous treatment of phenol aqueous solution in a fixed bed reactor. Catal. Today. 149, 334–340 (2010)CrossRefGoogle Scholar
  9. 9.
    Martins, R.C.; Quinta-Ferreira, R.M.: Remediation of phenolic wastewaters by advanced oxidation processes (AOPs) at ambient conditions: comparative studies. Chem. Eng. Sci. 66, 3243–3250 (2011)CrossRefGoogle Scholar
  10. 10.
    Melero, J.A.; Martínez, F.; Botas, J.A.; Molina, R.; Pariente, M.I.: Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater. Water. Res. 43, 4010–4018 (2009)CrossRefGoogle Scholar
  11. 11.
    Andreozzi, R.; Caprio, C.; Insola, A.; Marotta, R.: Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53, 51–59 (1999)CrossRefGoogle Scholar
  12. 12.
    Pontes, R.F.F.; Moraes, J.E.F.; Machulek, A.; Pinto, J.M.: A mechanistic kinetic model for phenol degradation by the Fenton process. J. Hazard. Mater. 176, 402–413 (2010)CrossRefGoogle Scholar
  13. 13.
    Neyens, E.; Baeyens, J.: A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 98, 33–50 (2003)CrossRefGoogle Scholar
  14. 14.
    Zrnčević, S.; Gomzi, Z.: CWPO: An environmental solution for pollutant removal from wastewater. Ind. Eng. Chem. Res. 44, 6110–6114 (2005)CrossRefGoogle Scholar
  15. 15.
    Perathoner, S.; Centi, G.: Wet hydrogen peroxide catalytic oxidation (WHPCO) of organic waste in agro-food and industrial steams. Top. Catal. 33, 207–224 (2005)CrossRefGoogle Scholar
  16. 16.
    Hofmann, J.; Freier, U.; Wecks, M.; Demund, A.: Degradation of halogenated organic compounds in ground water by heterogeneous catalytic oxidation with hydrogen peroxide. Top. Catal. 33, 243–247 (2005)CrossRefGoogle Scholar
  17. 17.
    Bishop, D.F.; Stern, G.; Fleischman, M.; Marshall, L.S.: Hydrogen peroxide catalytic oxidation of refractory organics in municipal waste waters. Ind. Eng. Chem. Proc. Des. Dev. 7, 110–117 (1968)CrossRefGoogle Scholar
  18. 18.
    Sotelo, J.L.; Ovejero, G.; Martinez, F.; Melero, J.A.; Milieni, A.: Catalytic wet peroxide oxidation of phenolic solutions over a \(\text{ LaTi1-xCu }_{{\rm x}}\text{ O }_{3}\) perovskite catalyst. Appl. Catal. B. Environ. 47, 281–294 (2004)CrossRefGoogle Scholar
  19. 19.
    Inchaurrond, N.S.; Massa, P.; Fenoglio, R.; Font, J.; Haure, P.: Efficient catalytic wet peroxide oxidation of phenol at moderate temperature using a high-load supported copper catalyst. Chem. Eng. J. 198–199, 426–434 (2012)CrossRefGoogle Scholar
  20. 20.
    Liou, R.M.; Chen, S.H.; Hung, M.Y.; Hsu, C.S.; Lai, J.Y.: Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution. Chemosphere 59, 117–125 (2005)CrossRefGoogle Scholar
  21. 21.
    Bel Hadjltaief, H.; Da Costa, P.; Beaunier, P.; Gálvez, M.E.; Ben Zina, M.: Fe-clay-plate as a heterogeneous catalyst in photo-Fenton oxidation of phenol as probe molecule for water treatment. Appl. Clay Sci. 91–92, 46–54 (2014)CrossRefGoogle Scholar
  22. 22.
    Garrido-Ramírez, E.G.; Marco, J.F.; Escalona, N.; Ureta-Zañartu, M.S.: Preparation and characterization of bimetallic Fe–Cu allophane nanoclays and their activity in the phenol oxidation by heterogeneous electro-Fenton reaction. Micro. Meso. Mater. 225, 303–311 (2016)CrossRefGoogle Scholar
  23. 23.
    Gao, H.; Zhao, B.X.; Luo, J.C.; Wu, D.; Ye, W.; Wang, Q.; Zhang, X.L.: Fe–Ni–Al pillared montmorillonite as a heterogeneous catalyst for the catalytic wet peroxide oxidation degradation of orange acid II: preparation condition and properties study. Micro. Meso. Mater. 196, 208–215 (2014)CrossRefGoogle Scholar
  24. 24.
    Timofeeva, M.N.; Khankhasaeva, S.T.; Talsi, E.P.; Panchenko, V.N.; Golovin, A.V.; Dashinamzhilova, E.T.; Tsybulya, S.V.: The effect of Fe/Cu ratio in the synthesis of mixed Fe, Cu, Al-clays used as catalysts in phenol peroxide oxidation. Appl. Catal. B: Environ. 90, 618–627 (2009)CrossRefGoogle Scholar
  25. 25.
    Shiraga, M.; Kawabata, T.; Li, D.; Shishido, T.; Komaguchi, K.; Sano, T.; Takehira, K.: Memory effect-enhanced catalytic ozonation of aqueous phenol and oxalic acid over supported Cu catalysts derived from hydrotalcite. Appl. Clay Sci. 33, 247–259 (2006)CrossRefGoogle Scholar
  26. 26.
    Yan, Y.; Jiang, S.; Zhang, H.: Efficient catalytic wet peroxide oxidation of phenol over Fe-ZSM-5 catalyst in a fixed bed reactor. Sep. Purif. Technol. 133, 365–374 (2014)CrossRefGoogle Scholar
  27. 27.
    Taran, O.P.; Zagoruiko, A.N.; Ayusheev, A.B.; Yashnik, S.A.; Prihod’ko, R.V.; Ismagilov, Z.R.; Goncharuk, V.V.; Parmon, V.N.: Wet peroxide oxidation of phenol over Cu-ZSM-5 catalyst in a flow reactor. Kinetics and diffusion study. Chem. Eng. J. 282, 108–115 (2015)CrossRefGoogle Scholar
  28. 28.
    Valange, S.; Gabelica, Z.; Abdellaoui, M.; Clacens, J.M.; Barrault, J.: Synthesis of copper bearing MFI zeolites and their activity in wet peroxide oxidation of phenol. Micro. Meso. Mater. 30, 177–185 (1999)CrossRefGoogle Scholar
  29. 29.
    Taran, O.P.; Yashnik, S.A.; Ayusheev, A.B.; Piskun, A.S.; Prihod’ko, R.V.; Ismagilov, Z.R.; Goncharuk, V.V.; Parmon, V.N.: Cu-containing MFI zeolites as catalysts for wet peroxide oxidation of formic acid as model organic contaminant. Appl. Catal. B Environ. 140–141, 506–515 (2013)CrossRefGoogle Scholar
  30. 30.
    Dükkancı, M.; Gündüz, G.; Yılmaz, S.; Prihod’ko, R.V.: Heterogeneous Fenton-like degradation of Rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis. J. Hazad. Mater. 181, 343–350 (2010)CrossRefGoogle Scholar
  31. 31.
    Caudo, S.; Centi, G.; Genovese, C.; Perathoner, S.: Homogeneous versus heterogeneous catalytic reactions to eliminate organics from waste water using \(\text{ H }_{2}\text{ O }_{2}\). Top. Catal. 40, 207–209 (2006)CrossRefGoogle Scholar
  32. 32.
    Perez-Benito, J.F.: Reaction pathways in the decomposition of hydrogen peroxide catalyzed by copper (II). J. Inorg. Biochem. 98, 430–438 (2004)CrossRefGoogle Scholar
  33. 33.
    Mohammadnejad, S.; Provis, J.L.; van Deventer, J.S.J.: Effects of grinding on the preg-robbing behaviour of pyrophyllite. Hydrometallurgy 146, 154–163 (2014)CrossRefGoogle Scholar
  34. 34.
    Zhang, J.; Yan, J.; Sheng, J.: Dry grinding effect on pyrophyllite-quartz natural mixture and its influence on the structural alternation of pyrophyllite. Micron. 71, 1–6 (2015)CrossRefGoogle Scholar
  35. 35.
    Saxena, S.; Prasad, M.; Amritphale, S.S.; Chandra, N.: Adsorption of cyanide from aqueous solutions at pyrophyllite surface. Sep. Purif. Technol. 24, 263–270 (2001)CrossRefGoogle Scholar
  36. 36.
    Keren, R.; Sparks, D.L.: Effect of pH and Ionic strength on boron adsorption by pyrophyllite. Soil Sci. Soc. Am. J. 58, 1095–1100 (1994)CrossRefGoogle Scholar
  37. 37.
    Ford, R.G.; Sparks, D.L.: The nature of Zn precipitates formed in the presence of pyrophyllite. Environ. Sci. Technol. 34, 2479–2483 (2000)CrossRefGoogle Scholar
  38. 38.
    Prasad, M.; Saxena, S.; Amritphale, S.S.; Chandra, N.: Kinetics and isotherms for aqueous lead adsorption by natural minerals. Ind. Eng. Chem. Res. 39, 3034–3037 (2000)CrossRefGoogle Scholar
  39. 39.
    Scheidegger, A.M.; Lamble, G.M.; Sparks, D.L.: Investigation of Ni sorption on pyrophyllite? An XAFS study. Environ. Sci. Technol. 30, 548–554 (1996)CrossRefGoogle Scholar
  40. 40.
    El Gaidoumi, A.; Loqman, A.; Chaouni Benadallah, A.; El Bali, B.; Kherbeche, A.: Co(II)-pyrophyllite as catalyst for phenol oxidative degradation: optimization study using response surface methodology. Waste Biomass Valor. (2017). Google Scholar
  41. 41.
    El Gaidoumi, A.; Doña-Rodríguez, J.M.; Pulido Melián, E.; González-Díaz, O.M.; El Bali, B.; Navío, J.A.; Kherbeche, A.: Mesoporous pyrophyllite-titania nanocomposites: synthesis and activity in phenol photocatalytic degradation. Res. Chem. Intermed. (2018). Google Scholar
  42. 42.
    El Gaidoumi, A.; Chaouni Benabdallah, A.; Lahrichi, A.; Kherbeche, A.: Adsorption du phénol en milieu aqueux par une pyrophyllite Marocaine brute et traitée (Adsorption of phenol in Aqueous medium by a raw and treated Moroccan pyrophyllite). J. Mater. Environ. Sci. 6, 2247–2259 (2015)Google Scholar
  43. 43.
    El Gaidoumi, A.; Doña Rodríguez, J.M.; Pulido Melián, E.; González-Díaz, O.M.; Navío Santos, J.A.; El Bali, B.; Kherbeche. A.: Synthesis of sol-gel pyrophyllite/\(\text{ TiO }_{2}\) heterostructures: Effect of calcination temperature and methanol washing on photocatalytic activity. Surf. Interf. 14, 19–25 (2019).Google Scholar
  44. 44.
    Eisenberg, G.: Colorimetric determination of hydrogen peroxide. Ind. Eng. Chem. Anal. Ed. 15, 327–328 (1943)CrossRefGoogle Scholar
  45. 45.
    Bentayeb, A.; Amouric, M.; Olives, J.; Dekayir, A.; Nadiri, A.: XRD and HRTEM characterization of pyrophyllite from Morocco and its possible applications. Appl. Clay Sci. 22, 211–221 (2003)CrossRefGoogle Scholar
  46. 46.
    Li, G.; Zeng, J.; Luo, J.; Liu, M.; Jiang, T.; Qiu, G.: Thermal transformation of pyrophyllite and alkali dissolution behavior of silicon. Appl. Clay Sci. 99, 282–288 (2014)CrossRefGoogle Scholar
  47. 47.
    Erdemoğlu, M.; Erdemoğlu, S.; Sayılkan, F.; Akarsu, M.; Şener, Ş.; Sayılkan, H.: Organo functional modified pyrophyllite: preparation, characterisation and Pb(II) ion adsorption property. Appl. Clay Sci 27, 41–52 (2004)CrossRefGoogle Scholar
  48. 48.
    Chaudhary, N.; Balomajumder, C.: Optimization study of adsorption parameters for removal of phenol on aluminum impregnated fly ash using response surface methodology. J. Taiwan Inst. Chem. Eng. 45, 852–859 (2014)CrossRefGoogle Scholar
  49. 49.
    Hussain, Z.; Salim, M.A.; Khan, M.A.; Khawaja, E.E.: X-ray photoelectron and Auger spectroscopy study of copper-sodium-germanate glasses. J. Non Cryst. Solids. 110, 44–52 (1989)CrossRefGoogle Scholar
  50. 50.
    Mclntyre, N.S.; Cook, M.G.: X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal. Chem. 47, 2208–2213 (1975)CrossRefGoogle Scholar
  51. 51.
    Hofer, E.F.; Hinterman, H.E.: The structure of electrodeposited copper examined by X-ray diffraction technique. J. Electrochem. Soc. 112, 167–173 (1965)CrossRefGoogle Scholar
  52. 52.
    Siriwardane, R.V.; Poston, J.A.: Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents by X-ray photoelectron spectroscopy and scanning electron microscopy. Appl. Surf. Sci. 68, 65–80 (1993)CrossRefGoogle Scholar
  53. 53.
    Jernigan, G.G.; Somorjai, G.A.: Carbon monoxide oxidation over three different oxidation states of copper: metallic copper, copper (I) oxide, and copper (II) oxide– a surface science and kinetic study. J. Catal. 147, 567–577 (1994)CrossRefGoogle Scholar
  54. 54.
    Sayılkan, H.; Erdemoğlu, S.; Şener, Ş.; Sayılkan, F.; Akarsu, M.; Erdemoğlu, M.: Surface modification of pyrophyllite with amino silane coupling agent for the removal of 4-nitrophenol from aqueous solutions. J. Colloid. Interface. Sci. 275, 530–538 (2004)CrossRefGoogle Scholar
  55. 55.
    Mukhopadhyay, T.K.; Ghatak, S.; Maiti, H.S.: Pyrophyllite as raw material for ceramic applications in the perspective of its pyro-chemical properties. Ceram. Int. 36, 909–916 (2010)CrossRefGoogle Scholar
  56. 56.
    Araujo, F.V.F.; Yokoyama, L.; Teixeira, L.A.C.; Campos, J.C.: Heterogeneous Fenton process using the mineral hematite for the discolouration of a reactive dye solution. Braz. J. Chem. Eng. 28, 605–616 (2011)CrossRefGoogle Scholar
  57. 57.
    Macarena; Munoz; de Pedro, Z.M.; Menendez, N.; Casas, J.A.; Rodriguez, J.J.: Ferromagnetic \(\gamma \)-alumina-supported iron catalyst for CWPO. Application to chlorophenols. Appl. Catal. B Environ, 136, 218-224 (2013).Google Scholar
  58. 58.
    Martínez, F.; Calleja, G.; Melero, J.A.; Molina, R.: Iron species incorporated over different silica supports for the heterogeneous photo-Fenton oxidation of phenol. Appl. Catal. B Environ. 70, 452–460 (2007)CrossRefGoogle Scholar
  59. 59.
    Molina, C.B.; Casas, J.A.; Zazo, J.A.; Rodríguez, J.J.: A comparison of Al-Fe and Zr-Fe pillared clays for catalytic wet peroxide oxidation. Chem. Eng. J. 118, 29–35 (2006)CrossRefGoogle Scholar
  60. 60.
    Crowther, N.; Larachi, F.: Iron-containing silicalites for phenol catalytic wet peroxidation. Appl. Catal. B Environ. 46, 293–305 (2003)CrossRefGoogle Scholar
  61. 61.
    Tatibouët, J.M.; Guélou, E.; Fournier, J.: Catalytic oxidation of phenol by hydrogen peroxide over a pillared clay containing iron. Active species and pH effect. Top. Catal. 33, 225–232 (2005)Google Scholar
  62. 62.
    Zazo, J.A.; Casas, J.A.; Mohedano, A.F.; Rodríguez, J.J.: Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl. Catal. B: Environ. 65, 261–268 (2006)CrossRefGoogle Scholar
  63. 63.
    Andreozzi, R.; Canterino, M.; Caprio, V.; Di Somma, I.; Marotta, R.: Use of an amorphous iron oxide hydrated as catalyst for hydrogen peroxide oxidation of ferulic acid in water. J. Hazard. Mater. 152, 870–875 (2008)CrossRefGoogle Scholar
  64. 64.
    Bautista, P.; Mohedano, A.F.; Casas, J.A.; Zazo, J.A.; Rodriguez, J.J.: An overview of the application of Fenton oxidation to industrial wastewaters treatment. J. Chem. Technol. Biotechnol. 83, 1323–1338 (2008)CrossRefGoogle Scholar
  65. 65.
    Guo, J.; Al-Dahhan, M.: Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst. Ind. Eng. Chem. Res. 42, 2450–2460 (2003)CrossRefGoogle Scholar
  66. 66.
    Sun, J.H.; Sun, S.P.; Fan, M.H.; Guo, H.Q.; Sun, R.X.: Oxidative decomposition of p-nitroaniline in water by solar photo-Fenton advanced oxidation process. J. Hazard. Mater. 153, 187–193 (2008)CrossRefGoogle Scholar
  67. 67.
    Inchaurrondo, N.; Ramos, C.P.; Žerjav, G.; Font, J.; Haure, P.: Modified diatomites for Fenton-like oxidation of phenol. Microporo. Mesoporor. Mater 239, 396–408 (2017)CrossRefGoogle Scholar
  68. 68.
    Yip, A.C.K.; Lam, F.L.Y.; Hu, X.: Chemical-vapor-deposited of copper on acid activated bentonite clay as an applicable heterogeneous catalyst for the photo fenton-like oxidation of textile organic pollutants. Ind. Eng. Chem. Res. 44, 7983–7990 (2005)CrossRefGoogle Scholar
  69. 69.
    Liotta, L.F.; Gruttadauria, M.; Di Carlo, G.; Perrini, G.; Librando, V.: Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J. Hazard. Mater. 162, 588–606 (2009)CrossRefGoogle Scholar
  70. 70.
    Santos, A.; Yustos, P.; Quintanilla, A.; Rodríguez, S.; García-Ochoa, F.: Route of the catalytic oxidation of phenol in aqueous phase. Appl. Catal. B: Environ. 39, 97–113 (2002)CrossRefGoogle Scholar
  71. 71.
    Santos, A.; Yustos, P.; Quintanilla, A.; García-Ochoa, F.: Influence of pH on the wet oxidation of phenol with copper catalyst. Top. Catal. 33, 181–192 (2005)CrossRefGoogle Scholar
  72. 72.
    Zazo, J.A.; Casas, J.A.; Mohedano, A.F.; Gilarranz, M.A.; Rodríguez, J.J.: Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environ. Sci. Technol. 39, 9295–9302 (2005)CrossRefGoogle Scholar
  73. 73.
    Delvin, H.P.; Harris, I.J.: Mechanism of the oxidation of aqueous phenol with dissolved oxygen. Ind. Chem. Fundam. 23, 387–392 (1984)CrossRefGoogle Scholar
  74. 74.
    Duprez, D.; Delanoë, J.; Barbier, J.; Isnard, P.; Blanchard, G.: Catalytic oxidation of organic compounds in aqueous media. Catal. Today. 29, 317–322 (1996)CrossRefGoogle Scholar
  75. 75.
    Araña, J.; Doña-Rodriguez, J.M.; Portillo-Carrizo, D.; Fernandez-Rodriguez, C.; Pérez-Peña, J.; González Díaz, O.; Navíoc, J.A.; Macías, M.: Photocatalytic degradation of phenolic compounds with new \(\text{ TiO }_{2}\) catalysts. Appl. Catal. B: Environ. 100, 346–354 (2010)CrossRefGoogle Scholar
  76. 76.
    Maqueda, C.; Rodríguez, J.L.P.; Justo, A.: Effect of pyrophyllite on the precipitation of aluminium sulphate during the dissolution of aluminosilicates by acid mixtures. Analyst 112, 1085–1086 (1987)CrossRefGoogle Scholar
  77. 77.
    Chaliha, S.; Bhattacharyya, K.G.: Catalytic wet oxidation of 2-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol in water with Mn(II)-MCM4. Chem. Eng. J. 139, 575–588 (2008)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Grupo FEAM, Unidad Asociada al CSIC (a través del ICM-Universidad de Sevilla)i-UNAT-Universidad de Las Palmas de Gran Canaria. Edificio del Parque Científico-Tecnológico de la ULPGCLas PalmasSpain
  2. 2.Laboratoire de Catalyse, Matériaux et Environnement (LCME), Ecole Supérieure de Technologie de FèsUniversité Sidi Mohamed Ben AbdellahFèsMorocco
  3. 3.Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla and Dpto. de Química InorgánicaUniversidad de SevillaSevillaSpain

Personalised recommendations