Advertisement

Evaluation of Heat Transfer Mechanisms in Heat Pipe Charged with Nanofluid

  • Vahit Corumlu
  • Ahmet OzsoyEmail author
  • Murat Ozturk
Review - Mechanical Engineering

Abstract

The nanofluid is a colloidal solid–liquid mixture obtained by the dispersing nanoparticles with a high heat transfer coefficient in the base fluid. In general, metal, metal oxide, ceramic and magnetic nanoparticles are used in nanofluids. The nanoparticles suspended in the base fluid of heat pipes effectively increased the heat transfer rate and thermal conductivity properties of the base fluid. The nanofluids have been found to be acting much better for some problems such as sedimentation, erosion, clogging and pressure drop compared to common slurries. The energy transfer is carried out by two-phase heat transfer mechanism in heat pipes. There are many parameters and factors that have an effect in the boiling heat transfer coefficient. It is not easy to understand the positive and negative changes caused by nanofluids in this complex heat transfer mechanism. The surface geometry is a significant indicator on the boiling heat transfer mechanism. Investigation into nanofluid effects besides the surface geometry is very important in the experimental studies. In addition, it is known that nanofluids change the properties of the heater surface, apart from the thermophysical properties. The synthesis methods of nanofluids are presented in this article. Then, the physical and chemical mechanisms determining the long-term stability of nanofluids are explained in detail. Finally, some useful information about the use of nanofluids in heat pipes and pool boiling of nanofluids is given. The presented study also describes the pool boiling mechanism of nanofluids to understand the positive effects of nanofluids on the heat pipes heat transfer mechanism.

Keywords

Nanofluid Heat pipe Pool boiling Surfactant Thermal conductivity Heat flux 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Suleyman Demirel University Scientific Research Unit, Project No. 4209 D1-14.

References

  1. 1.
    Jouhara, H.; Chauhan, A.; Nannou, T.; Almahmoud, S.; Delpech, B.; Wrobel, L.C.: Heat pipe based systems: advances and applications. Energy 128, 729–754 (2017).  https://doi.org/10.1016/j.energy.2017.04.028 CrossRefGoogle Scholar
  2. 2.
    Sureshkumar, R.; Mohideen, S.T.; Nethaji, N.: Heat transfer characteristics of nanofluids in heat pipes: a review. Renew. Sustain. Energy Rev. 20, 397–410 (2013).  https://doi.org/10.1016/j.rser.2012.11.044 CrossRefGoogle Scholar
  3. 3.
    Anderson, W.G.: Evaluation of heat pipe working fluids in the temperature range 450 to 700 K. AIP Conf. Proc. 699, 20–27 (2004).  https://doi.org/10.1063/1.1649553 CrossRefGoogle Scholar
  4. 4.
    Touloukian, Y.S.; Powell, R.W.; Ho, C.Y.; Klemens, P.G.: Thermal Conductivity - Metallic Elements and Alloys, vol. 1. IFI/PLENUM, New York-Washington (1970)CrossRefGoogle Scholar
  5. 5.
    Paul, G.; Chopkar, M.; Manna, I.; Das, P.K.: Techniques for measuring the thermal conductivity of nanofluids: a review. Renew. Sustain. Energy Rev. 14, 1913–1924 (2010).  https://doi.org/10.1016/j.rser.2010.03.017 CrossRefGoogle Scholar
  6. 6.
    Che Sidik, N.A.; Mahmud Jamil, M.; Aziz Japar, W.M.A.; Muhammad Adamu, I.: A review on preparation methods, stability and applications of hybrid nanofluids. Renew. Sustain. Energy Rev. 80, 1112–1122 (2017).  https://doi.org/10.1016/j.rser.2017.05.221 CrossRefGoogle Scholar
  7. 7.
    Ramezanizadeh, M.; Alhuyi Nazari, M.; Ahmadi, M.H.; Açıkkalp, E.: Application of nanofluids in thermosyphons: a review. J. Mol. Liq. 272, 395–402 (2018).  https://doi.org/10.1016/j.molliq.2018.09.101 CrossRefGoogle Scholar
  8. 8.
    Tawfik, M.M.: Experimental studies of nanofluid thermal conductivity enhancement and applications: a review. Renew. Sustain. Energy Rev. 75, 1239–1253 (2017).  https://doi.org/10.1016/j.rser.2016.11.111 CrossRefGoogle Scholar
  9. 9.
    Ganvir, R.B.; Walke, P.V.; Kriplani, V.M.: Heat transfer characteristics in nanofluid: a review. Renew. Sustain. Energy Rev. 75, 451–460 (2017).  https://doi.org/10.1016/j.rser.2016.11.010 CrossRefGoogle Scholar
  10. 10.
    Wang, X.Q.; Mujumdar, A.S.: A review on nanofluids - part II: experiments and applications. Braz. J. Chem. Eng. 25, 631–648 (2008).  https://doi.org/10.1590/S0104-66322008000400002 CrossRefGoogle Scholar
  11. 11.
    Wang, X.-Q.; Mujumdar, A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46, 1–19 (2007).  https://doi.org/10.1016/j.ijthermalsci.2006.06.010 CrossRefGoogle Scholar
  12. 12.
    Wen, D.; Lin, G.; Vafaei, S.; Zhang, K.: Review of nanofluids for heat transfer applications. Particuology 7, 141–150 (2009).  https://doi.org/10.1016/j.partic.2009.01.007 CrossRefGoogle Scholar
  13. 13.
    Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. In: ASME International Mechanical Engineering Congress and Exposition, pp. 99–105 (1995)Google Scholar
  14. 14.
    Ahuja, A.S.: Thermal design of a heat exchanger employing laminar flow of particle suspensions. Int. J. Heat Mass Transf. 25, 725–728 (1982).  https://doi.org/10.1016/0017-9310(82)90179-X CrossRefGoogle Scholar
  15. 15.
    Gupta, N.K.; Tiwari, A.K.; Ghosh, S.K.: Heat transfer mechanisms in heat pipes using nanofluids: a review. Exp. Therm. Fluid Sci. 90, 84–100 (2018).  https://doi.org/10.1016/j.expthermflusci.2017.08.013 CrossRefGoogle Scholar
  16. 16.
    Azmi, W.H.; Sharma, K.V.; Mamat, R.; Najafi, G.; Mohamad, M.S.: The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids: a review. Renew. Sustain. Energy Rev. 53, 1046–1058 (2016).  https://doi.org/10.1016/j.rser.2015.09.081 CrossRefGoogle Scholar
  17. 17.
    Murshed, S.M.S.; Leong, K.C.; Yang, C.: Investigations of thermal conductivity and viscosity of nanofluids. Int. J. Therm. Sci. 47, 560–568 (2008).  https://doi.org/10.1016/j.ijthermalsci.2007.05.004 CrossRefGoogle Scholar
  18. 18.
    Mahbubul, I.M.; Saidur, R.; Amalina, M.A.: Latest developments on the viscosity of nanofluids. Int. J. Heat Mass Transf. 55, 874–885 (2012).  https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.021 CrossRefGoogle Scholar
  19. 19.
    Nguyen, C.T.; Desgranges, F.; Roy, G.; Galanis, N.; Maré, T.; Boucher, S.; Angue Mintsa, H.: Temperature and particle-size dependent viscosity data for water-based nanofluids—hysteresis phenomenon. Int. J. Heat Fluid Flow 28, 1492–1506 (2007).  https://doi.org/10.1016/j.ijheatfluidflow.2007.02.004 CrossRefGoogle Scholar
  20. 20.
    Kole, M.; Dey, T.K.: Viscosity of alumina nanoparticles dispersed in car engine coolant. Exp. Therm. Fluid Sci. 34, 677–683 (2010).  https://doi.org/10.1016/j.expthermflusci.2009.12.009 CrossRefGoogle Scholar
  21. 21.
    Prasher, R.; Song, D.; Wang, J.; Phelan, P.: Measurements of nanofluid viscosity and its implications for thermal applications. Appl. Phys. Lett. 89, 133108 (2006).  https://doi.org/10.1063/1.2356113 CrossRefGoogle Scholar
  22. 22.
    Chevalier, J.; Tillement, O.; Ayela, F.: Rheological properties of nanofluids flowing through microchannels. Appl. Phys. Lett. 91, 233103 (2007).  https://doi.org/10.1063/1.2821117 CrossRefGoogle Scholar
  23. 23.
    Namburu, P.K.; Kulkarni, D.P.; Dandekar, A.; Das, D.K.: Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro Nano Lett. 2, 67 (2007).  https://doi.org/10.1049/mnl:20070037 CrossRefGoogle Scholar
  24. 24.
    Pastoriza-Gallego, M.J.; Casanova, C.; Legido, J.L.; Piñeiro, M.M.: CuO in water nanofluid: influence of particle size and polydispersity on volumetric behaviour and viscosity. Fluid Phase Equilibria 300, 188–196 (2011).  https://doi.org/10.1016/j.fluid.2010.10.015 CrossRefGoogle Scholar
  25. 25.
    Anoop, K.B.; Sundararajan, T.; Das, S.K.: Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int. J. Heat Mass Transf. 52, 2189–2195 (2009).  https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.063 zbMATHCrossRefGoogle Scholar
  26. 26.
    He, Y.; Jin, Y.; Chen, H.; Ding, Y.; Cang, D.; Lu, H.: Heat transfer and flow behaviour of aqueous suspensions of TiO\(_{2}\) nanoparticles (nanofluids) flowing upward through a vertical pipe. Int. J. Heat Mass Transf. 50, 2272–2281 (2007).  https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.024 zbMATHCrossRefGoogle Scholar
  27. 27.
    Lu, W.-Q.; Fan, Q.-M.: Study for the particle’s scale effect on some thermophysical properties of nanofluids by a simplified molecular dynamics method. Eng. Anal. Bound. Elem. 32, 282–289 (2008).  https://doi.org/10.1016/j.enganabound.2007.10.006 zbMATHCrossRefGoogle Scholar
  28. 28.
    Nguyen, C.T.; Desgranges, F.; Galanis, N.; Roy, G.; Maré, T.; Boucher, S.; Angue Mintsa, H.: Viscosity data for Al\(_{2}\)O\(_{3}\)–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? Int. J. Therm. Sci. 47, 103–111 (2008).  https://doi.org/10.1016/j.ijthermalsci.2007.01.033 CrossRefGoogle Scholar
  29. 29.
    Timofeeva, E.V.; Yu, W.; France, D.M.; Singh, D.; Routbort, J.L.: Nanofluids for heat transfer: an engineering approach. Nanoscale Res. Lett. 6, 182 (2011).  https://doi.org/10.1186/1556-276X-6-182 CrossRefGoogle Scholar
  30. 30.
    Timofeeva, E.V.; Routbort, J.L.; Singh, D.: Particle shape effects on thermophysical properties of alumina nanofluids. J. Appl. Phys. 106, 14304 (2009).  https://doi.org/10.1063/1.3155999 CrossRefGoogle Scholar
  31. 31.
    Masuda, H.; Ebata, A.; Teramae, K.; Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al\(_{2}\)O\(_{3}\), SiO\(_{2}\) and TiO\(_{2}\) ultra-fine particles. Netsu Bussei 7, 227–233 (1993).  https://doi.org/10.2963/jjtp.7.227 CrossRefGoogle Scholar
  32. 32.
    Maxwell, J.: A Treatise on Electricity and Magnetism: Vol II, vol. 1, pp. 333–335. Clarendon Press, Oxford (1873).  https://doi.org/10.1017/CBO9780511709333 CrossRefGoogle Scholar
  33. 33.
    Wang, X.; Xu, X.; S. Choi, S.U.: Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 13, 474–480 (1999).  https://doi.org/10.2514/2.6486 CrossRefGoogle Scholar
  34. 34.
    Xuan, Y.; Roetzel, W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43, 3701–3707 (2000).  https://doi.org/10.1016/S0017-9310(99)00369-5 zbMATHCrossRefGoogle Scholar
  35. 35.
    Wang, B.X.; Li, H.; Peng, X.F.: Research on the heat-conduction enhancement for liquid with nano-particle suspensions. J. Therm. Sci. 11, 214–219 (2002).  https://doi.org/10.1007/s11630-002-0057-6 CrossRefGoogle Scholar
  36. 36.
    Xuan, Y.; Li, Q.: Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21, 58–64 (2000).  https://doi.org/10.1016/S0142-727X(99)00067-3 CrossRefGoogle Scholar
  37. 37.
    Sözen, A.; Menlik, T.; Gürü, M.; Boran, K.; Kılıç, F.; Aktaş, M.; Çakır, M.T.: A comparative investigation on the effect of fly-ash and alumina nanofluids on the thermal performance of two-phase closed thermo-syphon heat pipes. Appl. Therm. Eng. 96, 330–337 (2016).  https://doi.org/10.1016/j.applthermaleng.2015.11.038 CrossRefGoogle Scholar
  38. 38.
    Witharana, S.; Palabiyik, I.; Musina, Z.; Ding, Y.: Stability of glycol nanofluids: the theory and experiment. Powder Technol. 239, 72–77 (2013).  https://doi.org/10.1016/j.powtec.2013.01.039 CrossRefGoogle Scholar
  39. 39.
    Kostic, M.; Golubovic, M.; Hull, J.R.; Choi, S.U.S.: One-step method for the production of nanofluids. US Patent 7,718,033 B1 (2010)Google Scholar
  40. 40.
    Li, Y.; Zhou, J.; Tung, S.; Schneider, E.; Xi, S.: A review on development of nanofluid preparation and characterization. Powder Technol. 196, 89–101 (2009).  https://doi.org/10.1016/j.powtec.2009.07.025 CrossRefGoogle Scholar
  41. 41.
    Ghadimi, A.; Saidur, R.; Metselaar, H.S.C.: A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transf. 54, 4051–4068 (2011).  https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014 CrossRefGoogle Scholar
  42. 42.
    Wen, D.; Ding, Y.: Experimental investigation into the pool boiling heat transfer of aqueous based \(\gamma \)-alumina nanofluids. J. Nanopart. Res. 7, 265–274 (2005).  https://doi.org/10.1007/s11051-005-3478-9 CrossRefGoogle Scholar
  43. 43.
    Missana, T.; Adell, A.: On the applicability of DLVO theory to the prediction of clay colloids stability. J. Colloid Interface Sci. 230, 150–156 (2000).  https://doi.org/10.1006/jcis.2000.7003 CrossRefGoogle Scholar
  44. 44.
    Tang, C.; Zhou, T.; Yang, J.; Zhang, Q.; Chen, F.; Fu, Q.; Yang, L.: Wet-grinding assisted ultrasonic dispersion of pristine multi-walled carbon nanotubes (MWCNTs) in chitosan solution. Colloids Surf. B Biointerfaces 86, 189–197 (2011).  https://doi.org/10.1016/j.colsurfb.2011.03.041 CrossRefGoogle Scholar
  45. 45.
    Chandler, D.: Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).  https://doi.org/10.1038/nature04162 CrossRefGoogle Scholar
  46. 46.
    Hashim, A.A. (ed.): Smart Nanoparticles Technology. InTech, Croatia (2012)Google Scholar
  47. 47.
    Yang, L.; Du, K.: A thermal conductivity model for low concentrated nanofluids containing surfactants under various dispersion types. Int. J. Refrig. 35, 1978–1988 (2012).  https://doi.org/10.1016/j.ijrefrig.2012.07.013 CrossRefGoogle Scholar
  48. 48.
    Griffin, W.C.: Classification of surface-active agents by “ HLB”. J. Soc. Cosmet. Chem. 1, 311–326 (1946)Google Scholar
  49. 49.
    Griffin, W.C.: Calculation of HLB values of non-ionic surfactants. Am. Perfum. Essent. Oil Rev. 65, 26–29 (1955)Google Scholar
  50. 50.
    Kole, M.; Dey, T.K.: Thermophysical and pool boiling characteristics of ZnO–ethylene glycol nanofluids. Int. J. Therm. Sci. 62, 61–70 (2012).  https://doi.org/10.1016/j.ijthermalsci.2012.02.002 CrossRefGoogle Scholar
  51. 51.
    Tang, E.; Cheng, G.; Ma, X.; Pang, X.; Zhao, Q.: Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system. Appl. Surf. Sci. 252, 5227–5232 (2006).  https://doi.org/10.1016/j.apsusc.2005.08.004 CrossRefGoogle Scholar
  52. 52.
    Zhu, H.; Zhang, C.; Tang, Y.; Wang, J.; Ren, B.; Yin, Y.: Preparation and thermal conductivity of suspensions of graphite nanoparticles. Carbon 45, 226–228 (2007).  https://doi.org/10.1016/j.carbon.2006.07.005 CrossRefGoogle Scholar
  53. 53.
    Wang, X.; Zhu, D.; Yang, S.: Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem. Phys. Lett. 470, 107–111 (2009).  https://doi.org/10.1016/j.cplett.2009.01.035 CrossRefGoogle Scholar
  54. 54.
    Popa, M.; Pradell, T.; Crespo, D.; Calderón-Moreno, J.M.: Stable silver colloidal dispersions using short chain polyethylene glycol. Colloids Surf. A Physicochem. Eng. Asp. 303, 184–190 (2007).  https://doi.org/10.1016/j.colsurfa.2007.03.050 CrossRefGoogle Scholar
  55. 55.
    Hassan, M.I.; Singh, P.K.; Tesfai, W.; Shatilla, Y.: An experimental study of heat pipe performance using nanofluids. Int. J. Green Energy 12, 225–229 (2015).  https://doi.org/10.1080/15435075.2014.891518 CrossRefGoogle Scholar
  56. 56.
    Hung, Y.-H.; Teng, T.-P.; Lin, B.-G.: Evaluation of the thermal performance of a heat pipe using alumina nanofluids. Exp. Therm. Fluid Sci. 44, 504–511 (2013).  https://doi.org/10.1016/j.expthermflusci.2012.08.012 CrossRefGoogle Scholar
  57. 57.
    Sözen, A.; Gürü, M.; Menlik, T.; Karakaya, U.; Çiftçi, E.: Experimental comparison of Triton X-100 and sodium dodecyl benzene sulfonate surfactants on thermal performance of TiO\(_{2}\)-deionized water nanofluid in a thermosiphon. Exp. Heat Transf. 31, 450–469 (2018).  https://doi.org/10.1080/08916152.2018.1445673 CrossRefGoogle Scholar
  58. 58.
    Daghigh, R.; Zandi, P.: Experimental analysis of heat transfer in spiral coils using nanofluids and coil geometry change in a solar system. Appl. Therm. Eng. 145, 295–304 (2018).  https://doi.org/10.1016/j.applthermaleng.2018.09.053 CrossRefGoogle Scholar
  59. 59.
    Al-Waeli, A.H.A.; Chaichan, M.T.; Sopian, K.; Kazem, H.A.: Influence of the base fluid on the thermo-physical properties of PV/T nanofluids with surfactant. Case Stud. Therm. Eng. 13, 100340 (2019).  https://doi.org/10.1016/j.csite.2018.10.001 CrossRefGoogle Scholar
  60. 60.
    Sözen, A.; Öztürk, A.; Özalp, M.; Çiftçi, E.: Influences of alumina and fly ash nanofluid usage on the performance of recuperator including heat pipe bundle. Int. J. Environ. Sci. Technol. (2018).  https://doi.org/10.1007/s13762-018-1832-6 CrossRefGoogle Scholar
  61. 61.
    Dehaj, M.S.; Mohiabadi, M.Z.: Experimental investigation of heat pipe solar collector using MgO nanofluids. Sol. Energy Mater. Sol. Cells 191, 91–99 (2019).  https://doi.org/10.1016/j.solmat.2018.10.025 CrossRefGoogle Scholar
  62. 62.
    Ozsoy, A.; Corumlu, V.: Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver–water nanofluid for commercial applications. Renew. Energy 122, 26–34 (2018).  https://doi.org/10.1016/j.renene.2018.01.031 CrossRefGoogle Scholar
  63. 63.
    Sundar, L.S.; Singh, M.K.; Sousa, A.C.M.: Turbulent heat transfer and friction factor of nanodiamond-nickel hybrid nanofluids flow in a tube: an experimental study. Int. J. Heat Mass Transf. 117, 223–234 (2018).  https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.109 CrossRefGoogle Scholar
  64. 64.
    Ravi Kumar, N.T.; Bhramara, P.; Kirubeil, A.; Syam Sundar, L.; Singh, M.K.; Sousa, A.C.M.: Effect of twisted tape inserts on heat transfer, friction factor of Fe\(_{3}\)O\(_{4}\) nanofluids flow in a double pipe U-bend heat exchanger. Int. Commun. Heat Mass Transf. 95, 53–62 (2018).  https://doi.org/10.1016/j.icheatmasstransfer.2018.03.020 CrossRefGoogle Scholar
  65. 65.
    Raei, B.; Peyghambarzadeh, S.M.; Salehi Asl, R.: Experimental investigation on heat transfer and flow resistance of drag-reducing alumina nanofluid in a fin-and-tube heat exchanger. Appl. Therm. Eng. 144, 926–936 (2018).  https://doi.org/10.1016/j.applthermaleng.2018.09.006 CrossRefGoogle Scholar
  66. 66.
    Zhao, S.; Xu, G.; Wang, N.; Zhang, X.: Experimental study on the thermal start-up performance of the graphene/water nanofluid-enhanced solar gravity heat pipe. Nanomaterials 8, 72 (2018).  https://doi.org/10.3390/nano8020072 CrossRefGoogle Scholar
  67. 67.
    Eiamsa-ard, S.; Wongcharee, K.: Convective heat transfer enhancement using Ag–water nanofluid in a micro-fin tube combined with non-uniform twisted tape. Int. J. Mech. Sci. 146–147, 337–354 (2018).  https://doi.org/10.1016/j.ijmecsci.2018.07.040 CrossRefGoogle Scholar
  68. 68.
    Krishnakumar, T.S.; Viswanath, S.P.; Varghese, S.M.; Prakash, M.J.: Experimental studies on thermal and rheological properties of Al\(_{2}\)O\(_{3}\)–ethylene glycol nanofluid. Int. J. Refrig. 89, 122–130 (2018).  https://doi.org/10.1016/j.ijrefrig.2018.03.008 CrossRefGoogle Scholar
  69. 69.
    Sarafraz, M.M.; Nikkhah, V.; Nakhjavani, M.; Arya, A.: Thermal performance of a heat sink microchannel working with biologically produced silver–water nanofluid: experimental assessment. Exp. Therm. Fluid Sci. 91, 509–519 (2018).  https://doi.org/10.1016/j.expthermflusci.2017.11.007 CrossRefGoogle Scholar
  70. 70.
    Mahbubul, I.M.: Preparation, Characterization, Properties and Application of Nanofluid. William Andrew (Elsevier), Norwich, NY (2019).  https://doi.org/10.1016/C2016-0-04294-8 CrossRefGoogle Scholar
  71. 71.
    Teng, T.-P.; Hung, Y.-H.; Teng, T.-C.; Mo, H.-E.; Hsu, H.-G.: The effect of alumina/water nanofluid particle size on thermal conductivity. Appl. Therm. Eng. 30, 2213–2218 (2010).  https://doi.org/10.1016/j.applthermaleng.2010.05.036 CrossRefGoogle Scholar
  72. 72.
    Haddad, Z.; Abu-Nada, E.; Oztop, H.F.; Mataoui, A.: Natural convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement? Int. J. Therm. Sci. 57, 152–162 (2012).  https://doi.org/10.1016/j.ijthermalsci.2012.01.016 CrossRefGoogle Scholar
  73. 73.
    Shima, P.D.; Philip, J.; Raj, B.: Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl. Phys. Lett. 94, 223101 (2009).  https://doi.org/10.1063/1.3147855 CrossRefGoogle Scholar
  74. 74.
    Jang, S.P.; Choi, S.U.S.: Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 84, 4316–4318 (2004).  https://doi.org/10.1063/1.1756684 CrossRefGoogle Scholar
  75. 75.
    Prasher, R.; Bhattacharya, P.; Phelan, P.E.: Brownian-motion-based convective–conductive model for the effective thermal conductivity of nanofluids. J. Heat Transf. 128, 588 (2006).  https://doi.org/10.1115/1.2188509 CrossRefGoogle Scholar
  76. 76.
    Evans, W.; Fish, J.; Keblinski, P.: Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl. Phys. Lett. 88, 93116 (2006).  https://doi.org/10.1063/1.2179118 CrossRefGoogle Scholar
  77. 77.
    Turgut, A.; Tavman, I.; Chirtoc, M.; Schuchmann, H.P.; Sauter, C.; Tavman, S.: Thermal conductivity and viscosity measurements of water-based TiO\(_{2}\) nanofluids. Int. J. Thermophys. 30, 1213–1226 (2009).  https://doi.org/10.1007/s10765-009-0594-2 CrossRefGoogle Scholar
  78. 78.
    Anoop, K.B.; Kabelac, S.; Sundararajan, T.; Das, S.K.: Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration. J. Appl. Phys. 106, 34909 (2009).  https://doi.org/10.1063/1.3182807 CrossRefGoogle Scholar
  79. 79.
    Yang, Y.; Zhang, Z.G.; Grulke, E.A.; Anderson, W.B.; Wu, G.: Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int. J. Heat Mass Transf. 48, 1107–1116 (2005).  https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.038 CrossRefGoogle Scholar
  80. 80.
    Mahbubul, I.M.; Chong, T.H.; Khaleduzzaman, S.S.; Shahrul, I.M.; Saidur, R.; Long, B.D.; Amalina, M.A.: Effect of ultrasonication duration on colloidal structure and viscosity of alumina–water nanofluid. Ind. Eng. Chem. Res. 53, 6677–6684 (2014).  https://doi.org/10.1021/ie500705j CrossRefGoogle Scholar
  81. 81.
    Kulkarni, D.P.; Das, D.K.; Vajjha, R.S.: Application of nanofluids in heating buildings and reducing pollution. Appl. Energy 86, 2566–2573 (2009).  https://doi.org/10.1016/j.apenergy.2009.03.021 CrossRefGoogle Scholar
  82. 82.
    Namburu, P.K.; Das, D.K.; Tanguturi, K.M.; Vajjha, R.S.: Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties. Int. J. Therm. Sci. 48, 290–302 (2009).  https://doi.org/10.1016/j.ijthermalsci.2008.01.001 CrossRefGoogle Scholar
  83. 83.
    Sohel Murshed, S.M.; Tan, S.-H.; Nguyen, N.-T.: Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics. J. Phys. D Appl. Phys. 41, 85502 (2008).  https://doi.org/10.1088/0022-3727/41/8/085502 CrossRefGoogle Scholar
  84. 84.
    Chen, H.; Ding, Y.; He, Y.; Tan, C.: Rheological behaviour of ethylene glycol based titania nanofluids. Chem. Phys. Lett. 444, 333–337 (2007).  https://doi.org/10.1016/j.cplett.2007.07.046 CrossRefGoogle Scholar
  85. 85.
    Chen, H.; Ding, Y.; Tan, C.: Rheological behaviour of nanofluids. New J. Phys. 9, 367–367 (2007).  https://doi.org/10.1088/1367-2630/9/10/367 CrossRefGoogle Scholar
  86. 86.
    Mahbubul, I.M.; Saidur, R.; Amalina, M.A.: Thermal conductivity, viscosity and density of R141b refrigerant based nanofluid. Procedia Eng. 56, 310–315 (2013).  https://doi.org/10.1016/j.proeng.2013.03.124 CrossRefGoogle Scholar
  87. 87.
    Elias, M.M.; Mahbubul, I.M.; Saidur, R.; Sohel, M.R.; Shahrul, I.M.; Khaleduzzaman, S.S.; Sadeghipour, S.: Experimental investigation on the thermo-physical properties of Al\(_{2}\)O\(_{3}\) nanoparticles suspended in car radiator coolant. Int. Commun. Heat Mass Transf. 54, 48–53 (2014).  https://doi.org/10.1016/j.icheatmasstransfer.2014.03.005 CrossRefGoogle Scholar
  88. 88.
    Kedzierski, M.A.: Viscosity and density of CuO nanolubricant. Int. J. Refrig. 35, 1997–2002 (2012).  https://doi.org/10.1016/j.ijrefrig.2012.06.012 CrossRefGoogle Scholar
  89. 89.
    Vajjha, R.S.; Das, D.K.: A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power. Int. J. Heat Mass Transf. 55, 4063–4078 (2012).  https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.048 CrossRefGoogle Scholar
  90. 90.
    Pantzali, M.N.; Kanaris, A.G.; Antoniadis, K.D.; Mouza, A.A.; Paras, S.V.: Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface. Int. J. Heat Fluid Flow 30, 691–699 (2009).  https://doi.org/10.1016/j.ijheatfluidflow.2009.02.005 CrossRefGoogle Scholar
  91. 91.
    Saeedinia, M.; Akhavan-Behabadi, M.A.; Razi, P.: Thermal and rheological characteristics of CuO–base oil nanofluid flow inside a circular tube. Int. Commun. Heat Mass Transf. 39, 152–159 (2012).  https://doi.org/10.1016/j.icheatmasstransfer.2011.08.001 CrossRefGoogle Scholar
  92. 92.
    Shin, D.; Banerjee, D.: Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int. J. Heat Mass Transf. 54, 1064–1070 (2011).  https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.017 CrossRefGoogle Scholar
  93. 93.
    Pak, B.C.; Cho, Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11, 151–170 (1998).  https://doi.org/10.1080/08916159808946559 CrossRefGoogle Scholar
  94. 94.
    Fakoor Pakdaman, M.; Akhavan-Behabadi, M.A.; Razi, P.: An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp. Therm. Fluid Sci. 40, 103–111 (2012).  https://doi.org/10.1016/j.expthermflusci.2012.02.005 CrossRefGoogle Scholar
  95. 95.
    Mohebbi, A.: Prediction of specific heat and thermal conductivity of nanofluids by a combined equilibrium and non-equilibrium molecular dynamics simulation. J. Mol. Liq. 175, 51–58 (2012).  https://doi.org/10.1016/j.molliq.2012.08.010 CrossRefGoogle Scholar
  96. 96.
    De Robertis, E.; Cosme, E.H.H.; Neves, R.S.; Kuznetsov, A.Y.; Campos, A.P.C.; Landi, S.M.; Achete, C.A.: Application of the modulated temperature differential scanning calorimetry technique for the determination of the specific heat of copper nanofluids. Appl. Therm. Eng. 41, 10–17 (2012).  https://doi.org/10.1016/j.applthermaleng.2012.01.003 CrossRefGoogle Scholar
  97. 97.
    Kumaresan, V.; Velraj, R.: Experimental investigation of the thermo-physical properties of water–ethylene glycol mixture based CNT nanofluids. Thermochim. Acta 545, 180–186 (2012).  https://doi.org/10.1016/j.tca.2012.07.017 CrossRefGoogle Scholar
  98. 98.
    Liu, J.; Wang, F.; Zhang, L.; Fang, X.; Zhang, Z.: Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications. Renew. Energy 63, 519–523 (2014).  https://doi.org/10.1016/j.renene.2013.10.002 CrossRefGoogle Scholar
  99. 99.
    Ghazvini, M.; Akhavan-Behabadi, M.A.; Rasouli, E.; Raisee, M.: Heat transfer properties of nanodiamond-engine oil nanofluid in laminar flow. Heat Transf. Eng. 33, 525–532 (2012).  https://doi.org/10.1080/01457632.2012.624858 CrossRefGoogle Scholar
  100. 100.
    He, Q.; Wang, S.; Tong, M.; Liu, Y.: Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage. Energy Convers. Manag. 64, 199–205 (2012).  https://doi.org/10.1016/j.enconman.2012.04.010 CrossRefGoogle Scholar
  101. 101.
    Mariano, A.; Pastoriza-Gallego, M.J.; Lugo, L.; Mussari, L.; Piñeiro, M.M.: Co\(_{3}\)O\(_{4}\) ethylene glycol-based nanofluids: thermal conductivity, viscosity and high pressure density. Int. J. Heat Mass Transf. 85, 54–60 (2015).  https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.061 CrossRefGoogle Scholar
  102. 102.
    Anoop, K.; Sadr, R.; Al-Jubouri, M.; Amani, M.: Rheology of mineral oil-SiO\(_{2}\) nanofluids at high pressure and high temperatures. Co3O4 ethylene glycol-based nanofluids: thermal conductivity, viscosity and high pressure density 77, 108–115 (2014).  https://doi.org/10.1016/j.ijthermalsci.2013.10.016 CrossRefGoogle Scholar
  103. 103.
    Chien, H.-T., Tsai, C.-I., Chen, P.-H., Chen, P.-Y.: Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid. In: Fifth International Conference on Electronic Packaging Technology Proceedings, 2003. ICEPT2003, pp. 389–391. IEEE (2003)Google Scholar
  104. 104.
    Manimaran, R.; Palaniradja, K.; Alagumurthi, N.; Hussain, J.: Experimental comparative study of heat pipe performance using CuO and TiO\(_{2}\) nanofluids. Int. J. Energy Res. 38, 573–580 (2014).  https://doi.org/10.1002/er.3058 CrossRefGoogle Scholar
  105. 105.
    Saleh, R.; Putra, N.; Prakoso, S.P.; Septiadi, W.N.: Experimental investigation of thermal conductivity and heat pipe thermal performance of ZnO nanofluids. Int. J. Therm. Sci. 63, 125–132 (2013).  https://doi.org/10.1016/j.ijthermalsci.2012.07.011 CrossRefGoogle Scholar
  106. 106.
    Senthilkumar, R.; Vaidyanathan, S.; Sivaraman, B.: Performance analysis of heat pipe using copper nanofluid with aqueous solution of n-butanol. Int. J. Mech. Mater. Eng. 1, 251–256 (2010)Google Scholar
  107. 107.
    Shanbedi, M.; Heris, S.Z.; Baniadam, M.; Amiri, A.; Maghrebi, M.: Investigation of heat-transfer characterization of EDA-MWCNT/DI–water nanofluid in a two-phase closed thermosyphon. Ind. Eng. Chem. Res. 51, 1423–1428 (2012).  https://doi.org/10.1021/ie202110g CrossRefGoogle Scholar
  108. 108.
    Yang, X.F.; Liu, Z.-H.; Zhao, J.: Heat transfer performance of a horizontal micro-grooved heat pipe using CuO nanofluid. J. Micromech. Microeng. 18, 35038 (2008).  https://doi.org/10.1088/0960-1317/18/3/035038 CrossRefGoogle Scholar
  109. 109.
    Naphon, P.; Thongkum, D.; Assadamongkol, P.: Heat pipe efficiency enhancement with refrigerant–nanoparticles mixtures. Energy Convers. Manag. 50, 772–776 (2009).  https://doi.org/10.1016/j.enconman.2008.09.045 CrossRefGoogle Scholar
  110. 110.
    Liu, Z.-H.; Li, Y.-Y.; Bao, R.: Compositive effect of nanoparticle parameter on thermal performance of cylindrical micro-grooved heat pipe using nanofluids. Int. J. Therm. Sci. 50, 558–568 (2011).  https://doi.org/10.1016/j.ijthermalsci.2010.11.013 CrossRefGoogle Scholar
  111. 111.
    Yang, X.F.; Liu, Z.H.: Application of functionalized nanofluid in thermosyphon. Nanoscale Res. Lett. 6, 494 (2011).  https://doi.org/10.1186/1556-276X-6-494 CrossRefGoogle Scholar
  112. 112.
    Noie, S.H.; Heris, S.Z.; Kahani, M.; Nowee, S.M.: Heat transfer enhancement using Al\(_{2}\)O\(_{3}\)/water nanofluid in a two-phase closed thermosyphon. Int. J. Heat Fluid Flow 30, 700–705 (2009).  https://doi.org/10.1016/j.ijheatfluidflow.2009.03.001 CrossRefGoogle Scholar
  113. 113.
    Huminic, G.; Huminic, A.; Morjan, I.; Dumitrache, F.: Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles. Int. J. Heat Mass Transf. 54, 656–661 (2011).  https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.005 CrossRefGoogle Scholar
  114. 114.
    Bhullar, B.S.; Gangacharyulu, D.; Das, S.K.: Augmented thermal performance of straight heat pipe employing annular screen mesh wick and surfactant free stable aqueous nanofluids. Heat Transf. Eng. 38, 217–226 (2017).  https://doi.org/10.1080/01457632.2016.1177418 CrossRefGoogle Scholar
  115. 115.
    Ghanbarpour, M.; Nikkam, N.; Khodabandeh, R.; Toprak, M.S.: Improvement of heat transfer characteristics of cylindrical heat pipe by using SiC nanofluids. Appl. Therm. Eng. 90, 127–135 (2015).  https://doi.org/10.1016/j.applthermaleng.2015.07.004 CrossRefGoogle Scholar
  116. 116.
    Buschmann, M.H.; Franzke, U.: Improvement of thermosyphon performance by employing nanofluid. Int. J. Refrig. 40, 416–428 (2014).  https://doi.org/10.1016/j.ijrefrig.2013.11.022 CrossRefGoogle Scholar
  117. 117.
    Buschmann, M.H.: Thermal conductivity and heat transfer of ceramic nanofluids. Int. J. Therm. Sci. 62, 19–28 (2012).  https://doi.org/10.1016/j.ijthermalsci.2011.09.019 CrossRefGoogle Scholar
  118. 118.
    Nine, M.J.; Chung, H.; Tanshen, M.R.; Osman, N.A.B.A.; Jeong, H.: Is metal nanofluid reliable as heat carrier? J. Hazard. Mater. 273, 183–191 (2014).  https://doi.org/10.1016/j.jhazmat.2014.03.055 CrossRefGoogle Scholar
  119. 119.
    Vijayakumar, M.; Navaneethakrishnan, P.; Kumaresan, G.; Kamatchi, R.: A study on heat transfer characteristics of inclined copper sintered wick heat pipe using surfactant free CuO and Al\(_{2}\)O\(_{3}\) nanofluids. J. Taiwan Inst. Chem. Eng. 81, 190–198 (2017).  https://doi.org/10.1016/j.jtice.2017.10.032 CrossRefGoogle Scholar
  120. 120.
    Nazari, M.A.; Ghasempour, R.; Ahmadi, M.H.; Heydarian, G.; Shafii, M.B.: Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. Int. Commun. Heat Mass Transf. 91, 90–94 (2018).  https://doi.org/10.1016/j.icheatmasstransfer.2017.12.006 CrossRefGoogle Scholar
  121. 121.
    Zhou, Y.; Cui, X.; Weng, J.; Shi, S.; Han, H.; Chen, C.: Experimental investigation of the heat transfer performance of an oscillating heat pipe with graphene nanofluids. Powder Technol. 332, 371–380 (2018).  https://doi.org/10.1016/j.powtec.2018.02.048 CrossRefGoogle Scholar
  122. 122.
    Das, S.K.; Putra, N.; Roetzel, W.: Pool boiling characteristics of nano-fluids. Int. J. Heat Mass Transf. 46, 851–862 (2003).  https://doi.org/10.1016/S0017-9310(02)00348-4 zbMATHCrossRefGoogle Scholar
  123. 123.
    Liu, Z.; Xiong, J.; Bao, R.: Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. Int. J. Multiph. Flow 33, 1284–1295 (2007).  https://doi.org/10.1016/j.ijmultiphaseflow.2007.06.009 CrossRefGoogle Scholar
  124. 124.
    Wen, D.; Corr, M.; Hu, X.; Lin, G.: Boiling heat transfer of nanofluids: the effect of heating surface modification. Int. J. Therm. Sci. 50, 480–485 (2011).  https://doi.org/10.1016/j.ijthermalsci.2010.10.017 CrossRefGoogle Scholar
  125. 125.
    Bang, I.C.; Heung Chang, S.: Boiling heat transfer performance and phenomena of Al\(_{2}\)O\(_{3}\)–water nano-fluids from a plain surface in a pool. Int. J. Heat Mass Transf. 48, 2407–2419 (2005).  https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047 CrossRefGoogle Scholar
  126. 126.
    Shoghl, S.N.; Bahrami, M.: Experimental investigation on pool boiling heat transfer of ZnO, and CuO water-based nanofluids and effect of surfactant on heat transfer coefficient. Int. Commun. Heat Mass Transf. 45, 122–129 (2013).  https://doi.org/10.1016/j.icheatmasstransfer.2013.04.015 CrossRefGoogle Scholar
  127. 127.
    Kwark, S.M.; Kumar, R.; Moreno, G.; Yoo, J.; You, S.M.: Pool boiling characteristics of low concentration nanofluids. Int. J. Heat Mass Transf. 53, 972–981 (2010).  https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.018 CrossRefGoogle Scholar
  128. 128.
    Song, S.L.; Lee, J.H.; Chang, S.H.: CHF enhancement of SiC nanofluid in pool boiling experiment. Exp. Therm. Fluid Sci. 52, 12–18 (2014).  https://doi.org/10.1016/j.expthermflusci.2013.08.008 CrossRefGoogle Scholar
  129. 129.
    Kim, H.D.; Kim, J.; Kim, M.H.: Experimental studies on CHF characteristics of nano-fluids at pool boiling. Int. J. Multiph. Flow 33, 691–706 (2007).  https://doi.org/10.1016/j.ijmultiphaseflow.2007.02.007 CrossRefGoogle Scholar
  130. 130.
    Kim, S.J.; Bang, I.C.; Buongiorno, J.; Hu, L.W.: Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. Heat Mass Transf. 50, 4105–4116 (2007).  https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002 CrossRefGoogle Scholar
  131. 131.
    Zhang, F.; Jacobi, A.M.: Aluminum surface wettability changes by pool boiling of nanofluids. Colloids Surf. A Physicochem. Eng. Asp. 506, 438–444 (2016).  https://doi.org/10.1016/j.colsurfa.2016.07.026 CrossRefGoogle Scholar
  132. 132.
    Quan, X.; Wang, D.; Cheng, P.: An experimental investigation on wettability effects of nanoparticles in pool boiling of a nanofluid. Int. J. Heat Mass Transf. 108, 32–40 (2017).  https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.098 CrossRefGoogle Scholar
  133. 133.
    Binks, B.P.; Horozov, T.S.: Aqueous foams stabilized solely by silica nanoparticles. Angew. Chem. 117, 3788–3791 (2005).  https://doi.org/10.1002/ange.200462470 CrossRefGoogle Scholar
  134. 134.
    Sarafraz, M.M.; Hormozi, F.: Nucleate pool boiling heat transfer characteristics of dilute Al\(_{2}\)O\(_{3}\)–ethyleneglycol nanofluids. Int. Commun. Heat Mass Transf. 58, 96–104 (2014).  https://doi.org/10.1016/j.icheatmasstransfer.2014.08.028 CrossRefGoogle Scholar
  135. 135.
    Shahmoradi, Z.; Etesami, N.; Nasr Esfahany, M.: Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis. Int. Commun. Heat Mass Transf. 47, 113–120 (2013).  https://doi.org/10.1016/j.icheatmasstransfer.2013.06.006 CrossRefGoogle Scholar
  136. 136.
    Amiri, A.; Shanbedi, M.; Amiri, H.; Heris, S.Z.; Kazi, S.N.; Chew, B.T.; Eshghi, H.: Pool boiling heat transfer of CNT/water nanofluids. Appl. Therm. Eng. 71, 450–459 (2014).  https://doi.org/10.1016/j.applthermaleng.2014.06.064 CrossRefGoogle Scholar
  137. 137.
    Sarafraz, M.M.; Hormozi, F.: Pool boiling heat transfer to dilute copper oxide aqueous nanofluids. Int. J. Therm. Sci. 90, 224–237 (2015).  https://doi.org/10.1016/j.ijthermalsci.2014.12.014 CrossRefGoogle Scholar
  138. 138.
    Paul, G.; Chopkar, M.; Manna, I.; Das, P.K.: Techniques for measuring the thermal conductivity of nanofluids: a review. Renew. Sustain. Energy Rev. 14, 1913–1924 (2010).  https://doi.org/10.1016/j.rser.2010.03.017 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Akhisar Vocational SchoolCelal Bayar UniversityManisaTurkey
  2. 2.Department of Energy Systems EngineeringIsparta University of Applied SciencesIspartaTurkey
  3. 3.Department of Mechatronic EngineeringIsparta University of Applied SciencesIspartaTurkey

Personalised recommendations