Advertisement

Cyclocopolymerization of N,N-Diallylammonium and N,N-Diallylguanidinium Acetate with Acrylonitrile Characterization, Thermal and Morphological Properties

  • Azza A. Al-Ghamdi
  • Salha N. Al-Harthi
  • Asma M. EL-Sharif
  • Abir S. Abdel-NabyEmail author
Research Article - Chemistry
  • 9 Downloads

Abstract

Two diallylamine salts, diallylammonium acetate (DAA acetate) and diallylguanidinium acetate (DAGA) were cyclocopolymerized in water with acrylonitrile (AN) using power ultrasound in order to prepare acrylonitrile copolymers involving thermally stable heterocyclic rings in their polymeric matrix. The structural characterization of the copolymers was performed using FTIR, \(^{13}\)C NMR, UV/Vis spectroscopy and elemental analysis. The results revealed that the diallyl amine salts cyclopolymerized to form pyrrolidine and not piperidine rings throughout the polymeric chains. The thermal behavior of the copolymers prepared under nitrogen atmosphere was investigated using thermogravimetry, differential thermal analysis (TGA/DTA) and differential scanning calorimetry. The morphological property was also discussed using scanning electron microscopy (ESEM). The results revealed that the thermal stability of the copolymers was improved by the increase in the content of N,N-diallylammonium and N,N-diallylguanidinium acetate. The power of ultrasonic waves enhanced the homogeneity of the copolymers blend films irrespective of the copolymer compositions.

Keywords

Acrylonitrile Diallylammonium and diallylguanidinium acetate Copolymerization Thermal properties Morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdel-Naby, A.: Copolymerization of acrylonitrile with N(substituted phenyl) itaconimide. J. Appl. Polym. Sci. 121, 169–175 (2011)CrossRefGoogle Scholar
  2. 2.
    Korobeinyk, A.; Whitby, R.; Mikhalovsky, S.: High temperature oxidative resistance of polyacrylonitrile-methylmethacrylate copolymer powder converting to a carbonized monolith. Eur. Polym. J. 48, 97–104 (2012)CrossRefGoogle Scholar
  3. 3.
    Tan, J.; Wang, X.; Tai, J.; Luo, Y.; Jia, D.: Novel blends of acrylonitrile butadiene rubber and polyurethane-silica hybrid networks. Expr. Polym. Lett. 6, 588–600 (2012)CrossRefGoogle Scholar
  4. 4.
    Bajaj, P.; Sreekumar, T.; Sen, K.: Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers. Polymer 24, 1707–1718 (2001)CrossRefGoogle Scholar
  5. 5.
    Sabaa, M.; Mikhael, M.; Yassin, A.; Elsabeè, M.: Copolymerization of acrylonitrile with N-substituted maleimides. Die. Angew. Makromol. Chem. 139, 95–112 (1986)CrossRefGoogle Scholar
  6. 6.
    Abdel-Naby, A.: Ultrasound assisted copolymerization of acrylonitrile with N-amino phenyl maleimides and N-amino phenyl 2,3 dimethyl maleimides. Ultrason. Sonochem. 19, 1180–1185 (2012)CrossRefGoogle Scholar
  7. 7.
    Butler, G.B.; Ingley, F.: Preparation and polymerization of unsaturated quaternary ammonium compounds. II. Halogenated allyl derivatives\(^{1,2}\). J. Am. Chem. Soc. 73, 895–896 (1951)CrossRefGoogle Scholar
  8. 8.
    Kadem, K.: Cyclopolymerization of diallyamine and its condensation with carboxylic drugs. Int. J. Chem. Sci. 13(2), 725–736 (2015)Google Scholar
  9. 9.
    Ali, Sh; Goni, L.; Mazumder, M.: Butler’s cyclopolymerizaton protocol in the synthesis of diallylamine salts/sulfur dioxide alternate polymers containing amino acid residues. J. Polym. Res. 24(184), 1–12 (2017)Google Scholar
  10. 10.
    Ali, Sh; Al-Hamouz, O.: Synthesis and cyclopolymerization of diallylammoniomethanesulfonate. Polym. Eng. Sci. 53, 2378–2388 (2013)CrossRefGoogle Scholar
  11. 11.
    Zaikov, G.; Malkanduev, Y.U.; Khashirova, S.; Esmurziev, A.; Mortynenko, A.; Sivova, L.; Sivov, N.: Synthesis and potential radical copolymerization of new monomers based on diallylamine. J. Appl. Sci. 91, 439–444 (2001)CrossRefGoogle Scholar
  12. 12.
    Vivekanandam, T.; Gopalan, A.; Vasudevan, T.; Umapathy, S.: Sonochemical cyclopolymerization of diallylamine in the presence of peroxomonosulfate. J. Appl. Polym. Sci. 98, 1548–1553 (2005)CrossRefGoogle Scholar
  13. 13.
    Kamel, M.; Helmy, H.; Mashaly, H.; Kafafy, H.: Ultrasonic assisted dyeing: dyeing of acrylic fabrics C.I. Astrazon basic red 5BL 200%. Ultrason Sonochem. 17, 92–97 (2010)CrossRefGoogle Scholar
  14. 14.
    Abdel-Naby, A.; Al-Harthi, S.: Dyeability and mechanical properties of acrylonitrile–diallylamine salts copolymers. Am. J. Appl. Sci. 10, 525–532 (2013)CrossRefGoogle Scholar
  15. 15.
    Sivov, N.; Martynenko, A.; Bondarenko, G.; Filatova, M.; Kabanova, E.; Popova, N.; Sivo, A.; Kruts’ko, E.: Structure and composition of guanidine acrylate, guanidine methacrylate, their homopolymers, and copolymers with diallyldimethylammonium chloride. Pet. Chem. 46, 41–59 (2006)CrossRefGoogle Scholar
  16. 16.
    Beevers, R.; White, E.: A note on the glass-transition temperatures of acrylonitrile + styrene copolymers. Polym. Lett. 1, 171–176 (1963)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia

Personalised recommendations