Advertisement

Heat Transfer Enhancement in Transformers by Optimizing Fin Designs and Using Nanofluids

  • Muhammad FarhanEmail author
  • Muhammad Saad Hameed
  • Hafiz Muhammad Suleman
  • Muhammad Anwar
Research Article - Mechanical Engineering
  • 5 Downloads

Abstract

In this paper, we have simulated different fin geometries at different flow intensities to study the optimum design for better flow and heat transfer characteristics to be used in transformers’ cooling. We use energy density of oil (pressure) as flow intensity parameter being a compressible fluid which is dependent on temperature variation. We observe direct proportionality of shear stresses (pressure drop) with flow intensity. Pressure drop is dominant in rectangular fins with higher height-to-width ratio (h/w), and it decreases sharply for lower h / w ratio especially at bends, whereas it is significantly better in conic-shaped fins especially at \(a\ge \) 1.2. We observe an inverse proportionality of temperature drop with the flow intensity due to transient heat transfer phenomenon. We observe smooth temperature drop for conic-shaped fins. We have also investigated oil-based alumina nanofluids (in different wt/V ratios) as coolant for heat transfer enhancement in transformers. It is observed experimentally that dielectric strength improves with oil-based nanofluids. We obtain about 8.67% better results by adding 0.08% particles in oil. Comparative analysis with previous works shows that alumina-based nanofluids have better results than others. Still, there is a lot of work to be done in their use at commercial level due to their short durability.

Keywords

Transformer Heat transfer optimization Fin design CFD simulation Nanofluids 

Abbreviations

h/w

Height-to-width ratio

wt/V

Weight per volume

CFD

Computational fluid dynamics

PEL

Pak Electron Limited

SIMPLE

Semi-implicit method for pressure-linked equations

SEM

Scanning electron microscopy

List of Symbols

\(\rho \)

Density (kg/\(\text {m}^{3})\)

\({\varvec{\nabla }}\)

Divergence (1/m)

\(\nabla T\)

Gradient of temperature (\(^{\circ }\)C/m)

\(A_n \)

Cross-sectional area in n-direction (\(\text {m}^{2})\)

\(A_\mathrm{r} \)

Cross-sectional area along radius (\(\text {m}^{2})\)

\(A_\mathrm{s} \)

Surface area (\(\text {m}^{2})\)

\(a, b, r, \dot{h}, k\)

Conic section components

h

Convective heat transfer coefficient (W/\(\text {m}^{2}\)\(^{\circ }\)C)

k

Thermal conductivity (W/m \(^{\circ }\)C)

\(Q_n \)

Heat transfer rate in n-direction (W)

\(Q_\mathrm{r} \)

Heat transfer rate along radius (W)

\(S_\mathrm{T} \)

Source term

T

Temperature (\(^{\circ }\)C or K)

\(\mu _\mathrm{f} \)

Dynamics viscosity (Pa s)

\(c_\mathrm{Pf} \)

Fluid specific heat (J/ \(^{\circ }\)C or J/K)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors gratefully acknowledge the Kazmi Electric Works for the experimental support, and Mr. Engr. Momin Khan and Dr. Mahabat Khan for providing useful information, advice and help on various technical issues. This study is sponsored by Institute of Space Technology, Islamabad, Pakistan.

References

  1. 1.
    Dasgupta, I.: Design of Transformers. Tata McGraw-Hill Education, New York (2002)Google Scholar
  2. 2.
    Arslan, A.; Adnan, S.H.: Environmental effect on temperature rise of transformer. In: 21st International Conference on Electricity Distribution, Frankfurt, pp. 6–9 (2011)Google Scholar
  3. 3.
    Agah, S.M.; Abyaneh, H.A.: Distribution transformer loss-of-life reduction by increasing penetration of distributed generation. IEEE Trans. Power Deliv. 26, 1128–1136 (2011).  https://doi.org/10.1109/TPWRD.2010.2094210 CrossRefGoogle Scholar
  4. 4.
    Kennedy, B.W.: Energy Efficient Transformers. McGraw-Hill, New York (1998)Google Scholar
  5. 5.
    Susa, D.; Lehtonen, M.; Nordman, H.: Dynamic thermal modeling of distribution transformers. IEEE Trans. Power Deliv. 20, 1919–1929 (2005).  https://doi.org/10.1109/TPWRD.2005.848675 CrossRefGoogle Scholar
  6. 6.
    IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators: IEEE Std C57.91-2011 (Revision of IEEE Std C57.91-1995), pp. 1–123 (2012).  https://doi.org/10.1109/IEEESTD.2012.6166928
  7. 7.
    Perez, J.: Fundamental principles of transformer thermal loading and protection. In: 2010 63rd Annual Conference for Protective Relay Engineers, pp. 1–14 (2010)Google Scholar
  8. 8.
    Pruente, J.: Loading thermal design and operation considerations. In: 46th Annual Transmission and Substation Design and Operation Symposium, The University of Texas at Arlington (2013)Google Scholar
  9. 9.
    Hosseini, R.; Nourolahi, M.; Gharehpetian, G.B.: Determination of OD cooling system parameters based on thermal modeling of power transformer winding. Simul. Model. Pract. Theory 16, 585–596 (2008).  https://doi.org/10.1016/j.simpat.2008.02.013 CrossRefGoogle Scholar
  10. 10.
    Sefidgaran, M.; Mirzaie, M.; Ebrahimzadeh, A.: Reliability model of the power transformer with ONAF cooling. Int. J. Electr. Power Energy Syst. 35, 97–104 (2012).  https://doi.org/10.1016/j.ijepes.2011.10.002 Google Scholar
  11. 11.
    Bartley, W.H.: Investigating transformer failure. In: Proceedings of the 5th Weidmann-ACTI Annual Technical Conference on New Diagnostic Concepts for Better Asset Management (2006)Google Scholar
  12. 12.
    Sathyanarayana, B.R.; Heydt, G.T.; Dyer, M.L.: Distribution transformer life assessment with ambient temperature rise projections. Electr. Power Compon. Syst. 37, 1005–1013 (2009).  https://doi.org/10.1080/15325000902918875 CrossRefGoogle Scholar
  13. 13.
    Zhang, J.; Li, X.; Vance, M.: Experiments and modeling of heat transfer in oil transformer winding with zigzag cooling ducts. Appl. Therm. Eng. 28, 36–48 (2008).  https://doi.org/10.1016/j.applthermaleng.2007.02.012 CrossRefGoogle Scholar
  14. 14.
    Swift, G.W.; Zocholl, E.S.; Bajpai, M.; Burger, J.F.; Castro, C.H.; Chano, S.R.; Cobelo, F.; de Sa, P.; Fennell, E.C.; Gilbert, J.G.; Grier, S.E.; Haas, R.W.; Hartmann, W.G.; Hedding, R.A.; Kerrigan, P.; Mazumdar, S.; Miller, D.H.; Mysore, P.G.; Nagpal, M.; Rebbapragada, R.V.; Thaden, M.V.; Uchiyama, J.T.; Usman, S.M.; Wardlow, J.D.; Yalla, M.: Adaptive transformer thermal overload protection. IEEE Trans. Power Deliv. 16, 516–521 (2001).  https://doi.org/10.1109/61.956730 CrossRefGoogle Scholar
  15. 15.
    Eckholz, K.; Knorr, W.; Schäfer, M.; Feser, K.; Cardillo, E.: New developments in transformer cooling calculations. In: International Conference on Large High Voltage Electric Systems, pp. 12–09 (2004)Google Scholar
  16. 16.
    Chong, S.W.: Modifications in transformer design to reduce temperature rise. Doctoral Dissertation, Universiti Malaysia Sarawak (2009)Google Scholar
  17. 17.
    Magnusson, L.: Design improvements of distribution transformers: how to improve conditions of transportation in Vietnam. Bachelor’s Thesis, University of Skövde (2014)Google Scholar
  18. 18.
    Kulkarni, S.V.; Khaparde, S.A.: Transformer Engineering: Design and Practice. CRC Press, Boca Raton (2004)Google Scholar
  19. 19.
    Wang, X.-Q.; Mujumdar, A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46, 1–19 (2007).  https://doi.org/10.1016/j.ijthermalsci.2006.06.010 CrossRefGoogle Scholar
  20. 20.
    Jardini, J.A.; Schmidt, H.P.; Tahan, C.M.V.; Oliveira, C.C.B.D.; Ahn, S.U.: Distribution transformer loss of life evaluation: a novel approach based on daily load profiles. IEEE Trans. Power Deliv. 15, 361–366 (2000).  https://doi.org/10.1109/61.847274 CrossRefGoogle Scholar
  21. 21.
    Sadati, S.B.; Tahani, A.; Darvishi, B.; Dargahi, M.; yousefi, H.: Comparison of distribution transformer losses and capacity under linear and harmonic loads. In: 2008 IEEE 2nd International Power and Energy Conference, pp. 1265–1269 (2008)Google Scholar
  22. 22.
    Raeisian, L.; Niazmand, H.; Ebrahimnia-Bajestan, E.; Werle, P.: Thermal management of a distribution transformer: an optimization study of the cooling system using CFD and response surface methodology. Int. J. Electr. Power Energy Syst. 104, 443–455 (2019).  https://doi.org/10.1016/j.ijepes.2018.07.043 CrossRefGoogle Scholar
  23. 23.
    Chereches, N.-C.; Chereches, M.; Miron, L.; Hudisteanu, S.: Numerical study of cooling solutions inside a power transformer. Energy Procedia 112, 314–321 (2017).  https://doi.org/10.1016/j.egypro.2017.03.1103 CrossRefGoogle Scholar
  24. 24.
    Yamaç, Hİ.; Koca, A.: Comparison of cooling performances of pin-fin, plate-fin and plate-pin-fin by using numerical method. Gazi J. Eng. Sci. (2018).  https://doi.org/10.30855/gmbd.2018.04.02.003 Google Scholar
  25. 25.
    Russo, F.; Basse, N.T.: Scaling of turbulence intensity for low-speed flow in smooth pipes. Flow Meas. Instrum. 52, 101–114 (2016).  https://doi.org/10.1016/j.flowmeasinst.2016.09.012 CrossRefGoogle Scholar
  26. 26.
    Fu, W.; McCalley, J.D.; Vittal, V.: Risk assessment for transformer loading. IEEE Trans. Power Syst. 16, 346–353 (2001).  https://doi.org/10.1109/59.932267 Google Scholar
  27. 27.
    Farhan, M.; Saad Hameed, M.: Optimization of the cooling system of transformer using nanofluids and altering the geometry of fins. Bachelor’s Thesis, Institute of Space Technology (2017)Google Scholar
  28. 28.
    IEEE Standard Test Procedure for Thermal Evaluation of Insulation Systems for Liquid-Immersed Distribution and Power Transformers. IEEE Std C57.100-2011 (Revision of IEEE Std C57.100-1999), pp. 1–37 (2012).  https://doi.org/10.1109/IEEESTD.2012.6143968
  29. 29.
    Gastelurrutia, J.; Ramos, J.C.; Larraona, G.S.; Rivas, A.; Izagirre, J.; del Río, L.: Numerical modelling of natural convection of oil inside distribution transformers. Appl. Therm. Eng. 31, 493–505 (2011).  https://doi.org/10.1016/j.applthermaleng.2010.10.004 CrossRefGoogle Scholar
  30. 30.
    Çengel, Y.A.: Heat Transfer: A Practical Approach. McGraw-Hill, New York (2003)Google Scholar
  31. 31.
    Versteeg, H.K.; Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education Limited, London (2007)Google Scholar
  32. 32.
    Georgilakis, P.S.: Spotlight on Modern Transformer Design. Springer, London (2009)CrossRefGoogle Scholar
  33. 33.
    Rafiq, M.; Lv, Y.; Li, C.: A Review on Properties, Opportunities, and Challenges of Transformer Oil-Based Nanofluids. https://www.hindawi.com/journals/jnm/2016/8371560/
  34. 34.
    Munson, B.R.; Young, B.G.; Okiishi, T.H.: Fundamentals of Fluid Mechanics. Wiley, New York (2005)zbMATHGoogle Scholar
  35. 35.
    Miller, D.S.: Internal Flow Systems. British Hydromechanics Research Association, London (1990)Google Scholar
  36. 36.
    Choi, S.U.S.; Eastman, J.A.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. Argonne National Lab, Lemont (1995)Google Scholar
  37. 37.
    Hwang, J.G.; O’Sullivan, F.; Zahn, M.; Hjortstam, O.; Pettersson, L.A.A.; Liu, R.: Modeling of Streamer Propagation in Transformer Oil-Based Nanofluids. In: 2008 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. pp. 361–366 (2008)Google Scholar
  38. 38.
    Hwang, J.G.; Member, S.; Zahn, M.; O’sullivan, F.M.; Pettersson, L.A.A.; Hjortstam, O.; Liu, R.; Member, S.: Electron scavenging by conductive nanoparticles in oil insulated power transformers. In: 2009 Joint Electrostatics Conference, Boston. pp. 1–12 (2009)Google Scholar
  39. 39.
    Wang, X.-Q.; Mujumdar, A.S.: A review on nanofluids—part II: experiments and applications. Br. J. Chem. Eng. 25, 631–648 (2008).  https://doi.org/10.1590/S0104-66322008000400002 CrossRefGoogle Scholar
  40. 40.
    Amoiralis, E.I.; Tsili, M.A.; Kladas, A.G.: Transformer design and optimization: a literature survey. IEEE Trans. Power Deliv. 24, 1999–2024 (2009).  https://doi.org/10.1109/TPWRD.2009.2028763 CrossRefGoogle Scholar
  41. 41.
    Aluminum Oxide | Al2O3 Material Properties. https://accuratus.com/alumox.html
  42. 42.
    Jin, H.; Andritsch, T.; Tsekmes, I.A.; Kochetov, R.; Morshuis, P.H.F.; Smit, J.J.: Properties of mineral oil based silica nanofluids. IEEE Trans. Dielectr. Electr. Insul. 21, 1100–1108 (2014).  https://doi.org/10.1109/TDEI.2014.6832254 CrossRefGoogle Scholar
  43. 43.
    Yu, W.; Xie, H.: A review on nanofluids: preparation, stability mechanisms, and applications. https://www.hindawi.com/journals/jnm/2012/435873/
  44. 44.
    Li, Y.; Zhou, J.; Tung, S.; Schneider, E.; Xi, S.: A review on development of nanofluid preparation and characterization. Powder Technol. 196, 89–101 (2009).  https://doi.org/10.1016/j.powtec.2009.07.025 CrossRefGoogle Scholar
  45. 45.
    Suresh, S.; Venkitaraj, K.P.; Selvakumar, P.; Chandrasekar, M.: Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf. A Physicochem. Eng. Asp. 388, 41–48 (2011).  https://doi.org/10.1016/j.colsurfa.2011.08.005 CrossRefGoogle Scholar
  46. 46.
    Bang, I.C.; Buongiorno, J.; Forrest, E.; Hu, L.W.; Williams, W.C.: Preparation and characterization of various nanofluids. In: TechConnect Briefs, vol. 2, pp. 408–411 (2006)Google Scholar
  47. 47.
  48. 48.
    Rafiq, M.; Lv, Y.; Li, C.; Yi, K.: Effect of different nanoparticle types on breakdown strength of transformer oil. In: 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), pp. 436–440 (2016)Google Scholar
  49. 49.
    Karsai, K.; Kiss, L.; Kerényi, D.: Large Power Transformers. Elsevier Science Pub. Co, Amsterdam (1987)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringInstitute of Space TechnologyIslamabadPakistan
  2. 2.State Key Laboratory of Multiphase Flows in Power EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  3. 3.Department of Mechanical EngineeringUniversity of Engineering and TechnologyLahorePakistan
  4. 4.Faculty of ScienceUniversity of NottinghamNottinghamUK

Personalised recommendations