Advertisement

A Predictive Model for Solar Photovoltaic Power based on Computational Intelligence Technique

  • Moulay Rachid DouiriEmail author
Research Article - Electrical Engineering

Abstract

This paper introduces a novel method for representing the photovoltaic (PV) characteristics using Takagi–Sugeno type neuro-fuzzy network (NF). The proposed NF uses four layers with sixty-four fuzzy rules. Moreover, an improved self-tuning method is developed based on the PV system and its high-performance requirements, to adjust the parameters of the fuzzy logic in order to minimize the square of the error between actual and reference outputs. The developed PV model has a compact structure, an interpretable set of rules and ultimately is accurate in predicting the output values for given input samples. The NF-PV model has been applied for reconstructing a set of practical current–voltage characteristics, and it has been shown to compare well with the measured values. The proposed approach can also be used to predict and extract the maximum power points of individual PV modules in real time. Numerical and experimental data have confirmed its accuracy.

Keywords

Neuro-fuzzy network Photovoltaic system Prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pandey, A.K.; Tyagi, V.V.; Selvaraj, J.A.; Rahim, N.A.; Tyagi, S.K.: Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renew. Sustain. Energy Rev. 53, 859–884 (2016).  https://doi.org/10.1016/j.rser.2015.09.043 CrossRefGoogle Scholar
  2. 2.
    Joshi, P.; Arora, S.: Maximum power point tracking methodologies for solar PV systems - A review. Renew. Sustain. Energy Rev. 70, 1154–1177 (2017).  https://doi.org/10.1016/j.rser.2016.12.019 CrossRefGoogle Scholar
  3. 3.
    Anurag, A.; Bal, S.; Sourav, S.; Nanda, M.: A review of maximum power-point tracking techniques for photovoltaic systems. Int. J. Sustain. Energy. 35(5), 478–501 (2016).  https://doi.org/10.1080/14786451.2014.918979 CrossRefGoogle Scholar
  4. 4.
    Han, Y.; Zhang, D.; Zhang, H.; Gao, Q.: Survey of maximum power point tracking techniques for photo-voltaic array. Int. J. Control Autom. 9(8), 49–58 (2016).  https://doi.org/10.14257/ijca.2016.9.8.06 CrossRefGoogle Scholar
  5. 5.
    Jawarneh, M.; Domijan, A.; Luo, W.: The performance of maximum power point tracking (MPPT) algorithms for photovoltaic systems. Int. J. Power Energy Syst. 35(4), 141–148 (2015).  https://doi.org/10.2316/Journal.203.2015.4.203-6153 Google Scholar
  6. 6.
    Eltawil, M.A.; Zhao, Z.: MPPT techniques for photovoltaic applications. Renew. Sustain. Energy Rev. 25, 793–813 (2013).  https://doi.org/10.1016/j.rser.2013.05.022 CrossRefGoogle Scholar
  7. 7.
    Abdelsalam, A.K.; Massoud, A.M.; Ahmed, S.; Enjeti, P.N.: High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids. IEEE Trans. Power Electron. 26(4), 1010–1021 (2011).  https://doi.org/10.1109/TPEL.2011.2106221 CrossRefGoogle Scholar
  8. 8.
    Mohanty, P.; Bhuvaneswari, G.; Balasubramanian, R.; Dhaliwal, N.K.: MATLAB based modeling to study the performance of different MPPT techniques used for solar PV system under various operating conditions. Renew. Sustain. Energy Rev. 38, 581–593 (2014).  https://doi.org/10.1016/j.rser.2014.06.001 CrossRefGoogle Scholar
  9. 9.
    Safari, A.; Mekhilef, S.: Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter. IEEE Trans. Ind. Electron. 58(4), 1154–1161 (2011).  https://doi.org/10.1109/TIE.2010.2048834 CrossRefGoogle Scholar
  10. 10.
    Tey, K.S.; Mekhilef, S.: Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans. Ind. Electron. 61(10), 5384–5392 (2014).  https://doi.org/10.1109/TIE.2014.2304921 CrossRefGoogle Scholar
  11. 11.
    Soon, T.K.; Mekhilef, S.: A fast-converging MPPT technique for photovoltaic system under fast-varying solar irradiation and load resistance. IEEE Trans. Ind. Inform. 11(1), 176–186 (2015).  https://doi.org/10.1109/TII.2014.2378231 CrossRefGoogle Scholar
  12. 12.
    Lalili, D.; Mellit, A.; Lourci, N.; Medjahed, B.; Berkouk, E.M.: Input output feedback linearization control and variable step size MPPT algorithm of a grid-connected photovoltaic inverter. Renew. Energy. 36(12), 3282–3291 (2011).  https://doi.org/10.1016/j.renene.2011.04.027 CrossRefGoogle Scholar
  13. 13.
    Chen, W.; Song, X.; Huang, H.; Yang, X.: Numerical and experimental investigation of parasitic edge capacitance for photovoltaic panel. Paper presented at the 2014 international power electronics conference, IPEC-Hiroshima-ECCE Asia 2014. 2967–2971, 2014.  https://doi.org/10.1109/IPEC.2014.6870105
  14. 14.
    Shadmand, M.B.; Balog, R.S.: A finite-element analysis approach to determine the parasitic capacitances of high-frequency multiwinding transformers for photovoltaic inverters. Paper presented at the 2013 IEEE power and energy conference at Illinois, PECI 2013. 114–119, 2013.  https://doi.org/10.1109/PECI.2013.6506044
  15. 15.
    Kenji, T.; Youichi, Y.; Kawaguchi, H.: Maximum power control for a photovoltaic power generation system by adaptive hill-climbing method. IEEJ Trans. Ind. Appl. 121(6), 689–694 (2001).  https://doi.org/10.1541/ieejias.121.689 CrossRefGoogle Scholar
  16. 16.
    Kjær, S.B.: Evaluation of the hill climbing and the incremental conductance maximum power point trackers for photovoltaic power systems. IEEE Trans. Energy Convers. 27(4), 922–929 (2012).  https://doi.org/10.1109/TEC.2012.2218816 CrossRefGoogle Scholar
  17. 17.
    Salas, V.; Olías, E.; Barrado, A.; Lázaro, A.: Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Sol. Energy Mater. Sol. Cells. 90(11), 1555–1578 (2006).  https://doi.org/10.1016/j.solmat.2005.10.023 CrossRefGoogle Scholar
  18. 18.
    Kharb, R.K.; Shimi, S.L.; Chatterji, S.; Ansari, M.F.: Modeling of solar PV module and maximum power point tracking using ANFIS. Renew. Sustain. Energy Rev. 33, 602–612 (2014).  https://doi.org/10.1016/j.rser.2014.02.014 CrossRefGoogle Scholar
  19. 19.
    Chikh, A.; Chandra, A.: Adaptive neuro-fuzzy based solar cell model. IET Renew. Power Gener. 8(6), 679–686 (2014).  https://doi.org/10.1049/iet-rpg.2013.0183 CrossRefGoogle Scholar
  20. 20.
    Elobaid, L.M.; Abdelsalam, A.K.; Zakzouk, E.E.: Artificial neural network-based photovoltaic maximum power point tracking techniques: a survey. IET Renew. Power Gener. 9(8), 1043–1063 (2015).  https://doi.org/10.1049/iet-rpg.2014.0359 CrossRefGoogle Scholar
  21. 21.
    Dounis, A.I.; Kofinas, P.; Papadakis, G.; Alafodimos, C.: A direct adaptive neural control for maximum power point tracking of photovoltaic system. Sol. Energy. 115, 145–165 (2015).  https://doi.org/10.1016/j.solener.2015.02.004 CrossRefGoogle Scholar
  22. 22.
    Bechouat, M.; Soufi, Y.; Sedraoui, M.; Kahla, S.: Energy storage based on maximum power point tracking in photovoltaic systems: a comparison between GAs and PSO approaches. Int. J. Hydrog. Energy. 40(39), 13737–13748 (2015).  https://doi.org/10.1016/j.ijhydene.2015.05.008 CrossRefGoogle Scholar
  23. 23.
    Soufi, Y.; Bechouat, M.; Kahla, S.: Fuzzy-PSO controller design for maximum power point tracking in photovoltaic system. Int. J. Hydrog. Energy. 42(13), 8680–8688 (2017).  https://doi.org/10.1016/j.ijhydene.2016.07.212 CrossRefGoogle Scholar
  24. 24.
    Pragallapati, N.; Sen, T.; Agarwal, V.: Adaptive velocity PSO for global maximum power control of a PV array under nonuniform irradiation conditions. IEEE J. Photovolt. 7(2), 624–639 (2017).  https://doi.org/10.1109/JPHOTOV.2016.2629844 CrossRefGoogle Scholar
  25. 25.
    Khaehintung, N.; Kunakorn, A.; Sirisuk, P.: A novel fuzzy logic control technique tuned by particle swarm optimization for maximum power point tracking for a photovoltaic system using a current-mode boost converter with bifurcation control. Int. J. Control Autom. Syst. 8(2), 289–300 (2010).  https://doi.org/10.1007/s12555-010-0215-7 CrossRefGoogle Scholar
  26. 26.
    Chen, L.-R.; Tsai, C.-H.; Lin, Y.-L.; Lai, Y.-S.: A biological swarm chasing algorithm for tracking the PV maximum power point. IEEE Trans. Energy Convers. 25(2), 484–493 (2010).  https://doi.org/10.1109/TEC.2009.2038067 CrossRefGoogle Scholar
  27. 27.
    Goetzberger, A.; Hoffmann, V.U.: Photovoltaic Solar Energy Generation. Springer Series in Optical Sciences, Berlin (2005)Google Scholar
  28. 28.
    Mamdani, E.H.; Assilian, S.: Experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Hum. Comput. Stud. 51(2), 135–147 (1999).  https://doi.org/10.1006/ijhc.1973.0303 CrossRefzbMATHGoogle Scholar
  29. 29.
    Sugeno, M.; Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28(1), 15–33 (1988).  https://doi.org/10.1016/0165-0114(88)90113-3 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Jang, J.S.-R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syste. Man Cybern. 23(3), 665–685 (1993).  https://doi.org/10.1109/21.256541 CrossRefGoogle Scholar
  31. 31.
    Khademi, N.; Rajabi, M.; Mohaymany, A.S.; Samadzad, M.: Day-to-day travel time perception modeling using an adaptive-network-based fuzzy inference system (ANFIS). EURO J. Transp. Logist. 5(1), 25–52 (2016).  https://doi.org/10.1007/s13676-014-0047-3 CrossRefGoogle Scholar
  32. 32.
    Chang, C.; Tao, C.: A novel approach to implement Takagi–Sugeno fuzzy models. IEEE Trans. Cybern. Article in Press (2017).  https://doi.org/10.1109/TCYB.2017.2701900
  33. 33.
    Lewis, C.D.: International Business Forecasting Methods. Butter-worths, London (1982)Google Scholar
  34. 34.
    Chin, V.J.; Salam, Z.; Ishaque, K.: An accurate and fast computational algorithm for the two-diode model of PV module based on a hybrid method. IEEE Trans. Ind. Electron. 64(8), 6212–6222 (2017).  https://doi.org/10.1109/TIE.2017.2682023 CrossRefGoogle Scholar
  35. 35.
    Dizqah, A.M.; Maheri, A.; Busawon, K.: An accurate method for the PV model identification based on a genetic algorithm and the interior-point method. Renew. Energy. 72, 212–222 (2014).  https://doi.org/10.1016/j.renene.2014.07.014 CrossRefGoogle Scholar
  36. 36.
    Bonanno, F.; Capizzi, G.; Graditi, G.; Napoli, C.; Tina, G.M.: A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module. Appl. Energy. 97, 956–961 (2012).  https://doi.org/10.1016/j.apenergy.2011.12.085 CrossRefGoogle Scholar
  37. 37.
    Tey, K.S.; Mekhilef, S.: Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans. Ind. Electron. 61(10), 5384–5391 (2014).  https://doi.org/10.1109/TIE.2014.2304921 CrossRefGoogle Scholar
  38. 38.
    Koutroulis, E.; Blaabjerg, F.: A new technique for tracking the global maximum power point of PV arrays operating under partial shading conditions. IEEE J. Photovolt. 2(2), 184–190 (2012).  https://doi.org/10.1109/JPHOTOV.2012.2183578 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Higher School of TechnologyCadi Ayyad UniversityEssaouiraMorocco

Personalised recommendations