Advertisement

Removal of Heavy Metals from Drinking Water Using Chikni Mitti (Kaolinite): Isotherm and Kinetics

  • Muhammad Irfan JaleesEmail author
  • Muhammad Umar Farooq
  • Sarosh Basheer
  • Sadia Asghar
Research Article - Chemistry
  • 27 Downloads

Abstract

Heavy metals in drinking water can cause adverse health effects. This study deals with the removal of heavy meals, i.e. \(\hbox {Pb}^{+2}\), \(\hbox {Ni}^{+2}\), \(\hbox {Cd}^{+2}\) and \(\hbox {Cr}^{+6}\) using locally available Chikni Mitti (Kaolinite). This natural adsorbent was used after grinding and without doing any kind of chemical modification. Optimum conditions including pH, concentration of Chikni Mitti, contact time, and agitation speed were established on experimental basis. Under these optimum conditions, 19.33 mg of \(\hbox {Pb}^{+2}\), 16.46 mg of \(\hbox {Ni}^{+2}\), 29.16 mg of \(\hbox {Cd}^{+2}\) and 37.64 mg of \(\hbox {Cr}^{+6}\) were removed per gram of Chikni Mitti used. Langmuir, Freundlich, Temkin, Dubinin–Raduskevich (D–R) and Flory Huggins isotherm models were found applicable on experimental data. Freundlich isotherm fitted best for the adsorption of \(\hbox {Cr}^{+6}\), \(\hbox {Cd}^{+2}\) and \(\hbox {Pb}^{+2}\) whereas for \(\hbox {Ni}^{+2}\), both Freundlich and Temkin fitted well. Kinetics of adsorption of \(\hbox {Pb}^{+2}\), \(\hbox {Ni}^{+2}\), \(\hbox {Cd}^{+2}\) and \(\hbox {Cr}^{+6}\) were found to follow second-order kinetics.

Keywords

Chikni Mitti Heavy metals Adsorption Isotherms Kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shahmohammadi-Kalalagh, S.; Babazadeh, H.; Nazemi, A.; Manshouri, M.: Isotherm and kinetic studies on adsorption of Pb, Zn and Cu by kaolinite. Casp. J. Environ. Sci. 9, 243–255 (2011)Google Scholar
  2. 2.
    Gupta, V.K.; Ali, I.: Removal of lead and chromium from wastewater using bagasse fly ash: a sugar industry waste. J. Colloid Interface Sci. 271(2), 321–328 (2004)CrossRefGoogle Scholar
  3. 3.
    Selim, H.M.; Amacher, M.C.: Reactivity and Transport of Heavy Metals in Soils. CRC Press, Boca Raton (1996)Google Scholar
  4. 4.
    Huff, J.; Lunn, R.M.; Waalkes, M.P.; Tomatis, L.; Infante, P.F.: Cadmium-induced cancers in animals and in humans. Int. J. Occup. Environ. Health 13(2), 202–212 (2007)CrossRefGoogle Scholar
  5. 5.
    Gibb, H.J.; Lees, P.S.; Pinsky, P.F.; Rooney, B.C.: Lung cancer among workers in chromium chemical production. Am. J. Ind. Med. 38(2), 115–126 (2000)CrossRefGoogle Scholar
  6. 6.
    Arita, A.; Costa, M.: Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics 1(3), 222–228 (2009)CrossRefGoogle Scholar
  7. 7.
    Raza, M.; Hussain, F.; Lee, J.-Y.; Shakoor, M.B.; Kwon, K.D.: Groundwater status in Pakistan: a review of contamination, health risks, and potential needs. Crit. Rev. Environ. Sci. Technol. 47(18), 1713–1762 (2017)CrossRefGoogle Scholar
  8. 8.
    Jalees, M.I.; Aslam, A.; Fatima, R.; Khalid, I.; Hasan, B.: Statistical modeling of groundwater quality for source and ionic relationships: a case study for drinking water quality. B. Life Environ. Sci. 1, 1–11 (1921)Google Scholar
  9. 9.
    Barakat, M.: New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4(4), 361–377 (2011)CrossRefGoogle Scholar
  10. 10.
    Dean, J.G.; Bosqui, F.L.; Lanouette, K.H.: Removing heavy metals from waste water. Environ. Sci. Technol. 6(6), 518–522 (1972)CrossRefGoogle Scholar
  11. 11.
    Qdais, H.A.; Moussa, H.: Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination 164(2), 105–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Derbyshire, F.; Jagtoyen, M.; Andrews, R.; Rao, A.; Martin-Gullon, I.; Grulke, E.A.: Carbon materials in environmental applications. Chem. Phys. Carbon 27, 1–66 (2001)Google Scholar
  13. 13.
    Tran, H.; Roddick, F.; O’Donnell, J.: Comparison of chromatography and desiccant silica gels for the adsorption of metal ions: I. Adsorption and kinetics. Water Res. 33(13), 2992–3000 (1999)CrossRefGoogle Scholar
  14. 14.
    Zhang, K.; Cheung, W.H.; Valix, M.: Roles of physical and chemical properties of activated carbon in the adsorption of lead ions. Chemosphere 60(8), 1129–1140 (2005).  https://doi.org/10.1016/j.chemosphere.2004.12.059 CrossRefGoogle Scholar
  15. 15.
    Zhan, X.M.; Zhao, X.: Mechanism of lead adsorption from aqueoussolutions using an adsorbent synthesized from natural condensed tannin. Water Res. 37(16), 3905–3912 (2003).  https://doi.org/10.1016/S0043-1354(03)00312-9 CrossRefGoogle Scholar
  16. 16.
    Wan Ngah, W.; Teong, L.; Hanafiah, M.: Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr. Polym. 83(4), 1446–1456 (2011)CrossRefGoogle Scholar
  17. 17.
    Tahiruddin, N.S.M.; Ab Rahman, S.Z.: Adsorption of lead in aqueous solution by a mixture of activated charcoal and peanut shell. World J. Sci. Technol. Res. 1(5), 102–109 (2013)Google Scholar
  18. 18.
    Singanan, M.: Removal of lead (II) and cadmium (II) ions from wastewater using activated biocarbon. Sci. Asia 37, 115–119 (2011)CrossRefGoogle Scholar
  19. 19.
    Rao, K.; Mohapatra, M.; Anand, S.; Venkateswarlu, P.: Review on cadmium removal from aqueous solutions. Int. J. Eng. Sci. Technol. 2(7), 81–103 (2010)Google Scholar
  20. 20.
    Gładysz-Płaska, A.; Majdan, M.; Pikus, S.; Sternik, D.: Simultaneous adsorption of chromium (VI) and phenol on natural red clay modified by HDTMA. Chem. Eng. J. 179, 140–150 (2012)CrossRefGoogle Scholar
  21. 21.
    Bhattacharyya, K.G.; Gupta, S.S.: Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv. Colloid Interface Sci. 140(2), 114–131 (2008)CrossRefGoogle Scholar
  22. 22.
    Foger, K.: Dispersed metal catalysts. Catalysis, pp. 227–305. Springer, Berlin (1984)Google Scholar
  23. 23.
    Dawodu, F.; Akpomie, G.; Ogbu, I.: Isotherm modeling on the equilibrium sorption of cadmium (II) from solution by agbani clay. Int. J. Multidiscip. Sci. Eng. 3(9), 9–14 (2012)Google Scholar
  24. 24.
    Nida’M, S.; Awwad, A.M.; Al-Dujaili, A.H.: Biosorption of Pb (II), Zn (II), and Cd (II) from aqueous solutions by (Eriobotrya japonica) Loquat bark. Int. J. Environ. Prot. 2, 1–7 (2012)Google Scholar
  25. 25.
    Choy, K.K.; McKay, G.; Porter, J.F.: Sorption of acid dyes from effluents using activated carbon. Resour. Conserv. Recycl. 27(1), 57–71 (1999)CrossRefGoogle Scholar
  26. 26.
    Vijayaraghavan, K.; Padmesh, T.; Palanivelu, K.; Velan, M.: Biosorption of nickel (II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J. Hazard. Mater. 133(1), 304–308 (2006)CrossRefGoogle Scholar
  27. 27.
    Lagergren, S.: About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24(4), 1–39 (1898)Google Scholar
  28. 28.
    Ho, Y.-S.; McKay, G.: Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451–465 (1999)CrossRefGoogle Scholar
  29. 29.
    Marlene, C.M.; Howard, F.M.; Eloise, H.E.; Boris, P.; Harry, S.P.; Nicole, C.P.: Standard X-Ray Differaction Powder Pattern. University of Arizona, Tucson (1981)Google Scholar
  30. 30.
    Azouaou, N.; Sadaoui, Z.; Mokaddem, H.: Adsorption of lead from aqueous solution onto untreated orange barks: equilibrium, kinetics and thermodynamics. In: E3S Web of Conferences 2013, p. 41034. EDP Sciences (2013)Google Scholar
  31. 31.
    Badmus, M.; Audu, T.; Anyata, B.: Removal of lead ion from industrial wastewaters by activated carbon prepared from periwinkle shells (Typanotonus fuscatus). Turk. J. Eng. Environ. Sci. 31(4), 251–263 (2007)Google Scholar
  32. 32.
    Liao, D.; Zheng, W.; Li, X.; Yang, Q.; Yue, X.; Guo, L.; Zeng, G.: Removal of lead (II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste. J. Hazard. Mater. 177(1), 126–130 (2010)CrossRefGoogle Scholar
  33. 33.
    Aljebori, A.M.K.; Alshirifi, A.N.: Effect of different parameters on the adsorption of textile dye ”Maxilon Blue GRL” from aqueous solution by using white marble. Asian J. Chem. 24, 5813 (2012)Google Scholar
  34. 34.
    Han, R.; Li, H.; Li, Y.; Zhang, J.; Xiao, H.; Shi, J.: Biosorption of copper and lead ions by waste beer yeast. J. Hazard. Mater. 137(3), 1569–1576 (2006)CrossRefGoogle Scholar
  35. 35.
    Han, R.; Zou, W.; Li, H.; Li, Y.; Shi, J.: Copper (II) and lead (II) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite. J. Hazard. Mater. 137(2), 934–942 (2006)CrossRefGoogle Scholar
  36. 36.
    Kadirvelu, K.; Kavipriya, M.; Karthika, C.; Radhika, M.; Vennilamani, N.; Pattabhi, S.: Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour. Technol. 87(1), 129–132 (2003)CrossRefGoogle Scholar
  37. 37.
    Budsaereechai, S.; Kamwialisak, K.; Ngernyen, Y.: Adsorption of lead, cadmium and copper on natural and acid activated bentonite clay. KKU Res. J. 17(5), 800–810 (2012)Google Scholar
  38. 38.
    Qaiser, S.; Saleemi, A.R.; Mahmood Ahmad, M.: Heavy metal uptake by agro based waste materials. Electron. J. Biotechnol. 10(3), 409–416 (2007)CrossRefGoogle Scholar
  39. 39.
    Annadurai, G.; Juang, R.; Lee, D.: Adsorption of heavy metals from water using banana and orange peels. Water Sci. Technol. 47(1), 185–190 (2003)CrossRefGoogle Scholar
  40. 40.
    Boujelben, N.; Bouzid, J.; Elouear, Z.: Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: study in single and binary systems. J. Hazard. Mater. 163(1), 376–382 (2009)CrossRefGoogle Scholar
  41. 41.
    Álvarez-Ayuso, E.; García-Sánchez, A.: Removal of cadmium from aqueous solutions by palygorskite. J. Hazard. Mater. 147(1), 594–600 (2007)CrossRefGoogle Scholar
  42. 42.
    Huang, Z.; Zhang, B.; Fang, G.: Adsorption behavior of Cr (VI) from aqueous solutions by microwave modified porous larch tannin resin. BioResources 8(3), 4593–4608 (2013)CrossRefGoogle Scholar
  43. 43.
    De Lima, L.S.; Araujo, M.D.M.; Quináia, S.P.; Migliorine, D.W.; Garcia, J.R.: Adsorption modeling of Cr, Cd and Cu on activated carbon of different origins by using fractional factorial design. Chem. Eng. J. 166(3), 881–889 (2011)CrossRefGoogle Scholar
  44. 44.
    Weng, C.-H.; Sharma, Y.; Chu, S.-H.: Adsorption of Cr (VI) from aqueous solutions by spent activated clay. J. Hazard. Mater. 155(1), 65–75 (2008)CrossRefGoogle Scholar
  45. 45.
    Liu, Z.; Zhang, F.-S.: Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J. Hazard. Mater. 167(1), 933–939 (2009)CrossRefGoogle Scholar
  46. 46.
    Abdel-Ghani, N.; Hefny, M.; El-Chaghaby, G.A.: Removal of lead from aqueous solution using low cost abundantly available adsorbents. Int. J. Environ. Sci. Technol. 4(1), 67–73 (2007)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Institute of Environmental Engineering and ResearchUniversity of Engineering and TechnologyLahorePakistan

Personalised recommendations