Advertisement

PRNG Based on Skew Tent Map

  • L. Palacios-Luengas
  • J. L. Pichardo-Méndez
  • J. A. Díaz-Méndez
  • F. Rodríguez-Santos
  • R. Vázquez-Medina
Research Article - Computer Engineering and Computer Science
  • 16 Downloads

Abstract

Internet of things (IoT) devices should be designed taking security requirements into consideration, so that they can be used securely in open environments. Designing secure IoT devices requires the ability to design fast and secure cryptography modules. A component in these modules is the pseudorandom number generator (PRNG), which can be built using different strategies. Some of these strategies use chaotic maps, and in such cases, the chaotic map that is selected must be simple and feasible to implement in a digital device by using the IEEE-754 floating-point standard. The chaotic map must also generate number sequences whose statistical distribution looks uniform. In this way, this paper shows the digital implementation of a PRNG by using a non-scaled non-discretized skew tent map (STM). The proposed PRNG can produce uniformly distributed number sequences when the annulling chaos conditions are identified and avoided on the chaotic map. Furthermore, the pseudorandom sequences are generated in few milliseconds. Compared to similar PRNGs recently reported, the proposed PRNG has been successful, based on tests, such as the correlation coefficient, key sensitivity, statistical analysis, entropy analysis, key space and randomness.

Keywords

Pseudorandom noise generators Uniformly distributed number sequences Chaotic noise generators Chaotic maps Skew tent map Digital implementation of pseudorandom noise generators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank Guillermo Delgado Gutiérrez (Instituto Politécnico Nacional) for the technical support provided in conducting the experiments.

Funding

This work was supported by the Consejo Nacional de Ciencia y Tecnología, México [Grant No. CVU-373990 (L. Palacios-Luengas, Postdoctoral scholarship), CVU-668444 (J. L. Pichardo-Méndez, Ph.D. scholarship) and CVU-377075 (F. Rodríguez-Santos, Ph.D. scholarship)] and the Instituto Politécnico Nacional, México [Grant No. SIP20181398 (R. Vázquez-Medina)].

References

  1. 1.
    Madakam, S.; Ramaswamy, R.; Tripathi, S.: Internet of things (IoT): a literature review. J. Comput. Commun. 3(05), 164 (2015)CrossRefGoogle Scholar
  2. 2.
    Bakiri, M.; Guyeux, C.; Couchot, J.-F.; Marangio, L.; Galatolo, S.: A hardware and secure pseudorandom generator for constrained devices. IEEE Trans. Ind. Inf. 14(8), 3754–3765 (2018)CrossRefGoogle Scholar
  3. 3.
    Barakat, M.L.; Mansingka, A.S.; Radwan, A.G.; Salama, K.N.: Hardware stream cipher with controllable chaos generator for colour image encryption. IET Image Process. 8(1), 33–43 (2014)CrossRefGoogle Scholar
  4. 4.
    Yang, X.; Min, L.; Wang, X.: A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption. Chaos Interdiscip. J. Nonlinear Sci. 25(5), 053104 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Xiangjun, W.; Li, Y.; Kurths, J.: A new color image encryption scheme using CML and a fractional-order chaotic system. PLoS ONE 10(3), e0119660 (2015)CrossRefGoogle Scholar
  6. 6.
    Ismail, S.M.; Said, L.A.; Rezk, A.A.; Radwan, A.G.; Madian, A.H.; Abu-Elyazeed, M.F.; Solimane, A.M.: Generalized fractional logistic map encryption system based on FPGA. AEU Int. J. Electron. Commun. 82, 533–542 (2017)CrossRefGoogle Scholar
  7. 7.
    Zhou, S.; Wei, Z.; Wang, B.; Zheng, X.; Zhou, C.; Zhang, Q.: Encryption method based on a new secret key algorithm for color images. AEU Int. J. Electron. Commun. 70(1), 1–7 (2016)CrossRefGoogle Scholar
  8. 8.
    Xiang, D.; Ping, L.; Yanping, X.; Gao, S.; Chen, L.; Bao, X.: Truly random bit generation based on a novel random brillouin fiber laser. Opt. Lett. 40(22), 5415–5418 (2015)CrossRefGoogle Scholar
  9. 9.
    Liu, L.; Miao, S.; Cheng, M.; Gao, X.: A pseudorandom bit generator based on new multi-delayed Chebyshev map. Inf. Process. Lett. 116(11), 674–681 (2016)CrossRefGoogle Scholar
  10. 10.
    Bohl, E.: Simple true random number generator for any semi-conductor technology. IET Comput. Dig. Tech. 8(6), 239–245 (2014)CrossRefGoogle Scholar
  11. 11.
    Teh, J.S.; Samsudin, A.; Al-Mazrooie, M.; Akhavan, A.: Gpus and chaos: a new true random number generator. Nonlinear Dyn. 82(4), 1913–1922 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    López-Leyva, J.A.; Arvizu-Mondragón, A.: Simultaneous dual true random numbers generator. Dyna 83(195), 93–98 (2016)CrossRefGoogle Scholar
  13. 13.
    Walters, P.: An Introduction to Ergodic Theory, vol. 79. Springer, Berlin (2000)zbMATHGoogle Scholar
  14. 14.
    Fang, X.; Wang, Q.; Guyeux, C.; Bahi, J.M.: FPGA acceleration of a pseudorandom number generator based on chaotic iterations. J. Inf. Secur. Appl. 19(1), 78–87 (2014)Google Scholar
  15. 15.
    Marquardt, P.; Svaba, P.; Van Trung, T.: Pseudorandom number generators based on random covers for finite groups. Des. Codes Cryptogr. 64(1–2), 209–220 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Liang, R.; Tan, X.; Zhou, H.; Wang, S.: An efficient parallel pseudorandom bit generator based on an asymmetric coupled chaotic map lattice. Pramana 85(4), 617–627 (2015)CrossRefGoogle Scholar
  17. 17.
    Senouci, A.; Bouhedjeur, H.; Tourche, K.; Boukabou, A.: FPGA based hardware and device-independent implementation of chaotic generators. AEU Int. J. Electron. Commun. 82(2), 211–220 (2017)CrossRefGoogle Scholar
  18. 18.
    Çavuşoğlu, Ü.; Akgül, A.; Kaçar, S.; Pehlivan, İ.; Zengin, A.: A novel chaos-based encryption algorithm over TCP data packet for secure communication. Secur. Commun. Netw. 9, 1285–1296 (2016)CrossRefGoogle Scholar
  19. 19.
    Caballero-Gil, P.; Caballero-Gil, C.; Molina-Gil, J.: RFID authentication protocol based on a novel EPC Gen2 PRNG. Int. Inf. Inst (Tokyo) Inf. 17(4), 1587 (2014)Google Scholar
  20. 20.
    Ukil, A.; Bandyopadhyay, S.; Bhattacharyya, A.; Pal, A.; Bose, T.: Lightweight security scheme for IoT applications using CoAP. Int. J. Pervasive Comput. Commun. 10(4), 372–392 (2014)CrossRefGoogle Scholar
  21. 21.
    Zhang, W.; Tang, S.; Zhang, L.; Ma, Z.; Song, J.: Chaotic stream cipher-based secure data communications over intelligent transportation network. Int. J. Antennas Propag. 2015, 10 (2015)Google Scholar
  22. 22.
    Ming, X.; Chen, Z.; Zhou, Z.; Zhang, B.: An advanced spread spectrum architecture using pseudorandom modulation to improve EMI in class D amplifier. IEEE Trans. Power Electron. 26(2), 638–646 (2011)CrossRefGoogle Scholar
  23. 23.
    Mandal, K.; Fan, X.; Gong, G.: Design and implementation of Warbler family of lightweight pseudorandom number generators for smart devices. ACM Trans. Embed. Comput. Syst. (TECS) 15(1), 1 (2016)CrossRefGoogle Scholar
  24. 24.
    Liao, Y.; Fan, X.: Mathematical calculation of sequence length in LFSR-dithered MASH digital delta-sigma modulator with odd initial condition. AEU Int. J. Electron. Commun. 80, 114–126 (2017)CrossRefGoogle Scholar
  25. 25.
    Feng, L.; Xiaoxing, G.: A new construction of pseudorandom number generator. J. Netw. 9(8), 2176–2183 (2014)Google Scholar
  26. 26.
    Payingat, J.; Pattathil, D.P.: Pseudorandom bit sequence generator for stream cipher based on elliptic curves. Math. Probl. Eng. 2015, 16 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Balková, L.; Bucci, M.; De Luca, A.; Hladkỳ, J.; Puzynina, S.: Aperiodic pseudorandom number generators based on infinite words. Theor. Comput. Sci. 647, 85–100 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Zhu, H.; Zhao, C.; Zhang, X.; Yang, L.: A novel iris and chaos-based random number generator. Comput. Secur. 36, 40–48 (2013)CrossRefGoogle Scholar
  29. 29.
    Spencer, J.: Pseudorandom bit generators from enhanced cellular automata. J. Cell. Autom. 10, 295–317 (2015)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Guo, W.; Zhao, J.; Ye, R.: A chaos-based pseudorandom permutation and bilateral diffusion scheme for image encryption. Int. J. Image Graph. Signal Process. 6(11), 50 (2014)CrossRefGoogle Scholar
  31. 31.
    Wang, Y.; Liu, Z.; Ma, J.; He, H.: A pseudorandom number generator based on piecewise logistic map. Nonlinear Dyn. 83(4), 2373–2391 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Wang, K.; Yan, Q.; Shihua, Y.; Qi, X.; Zhou, Y.; Tang, Z.: High throughput pseudorandom number generator based on variable argument unified hyperchaos. VLSI Des. 2014, 9 (2014)CrossRefGoogle Scholar
  33. 33.
    Murillo-Escobar, M.A.; Cruz-Hernández, C.; Cardoza-Avendaño, L.; Méndez-Ramírez, R.: A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 87(1), 407–425 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Lopez-Hernandez, J.; Vazquez-Medina, R.; Ortiz-Moctezuma, M.B.; Del-Rio-Correa, J.L.: Digital implementation of a pseudo-random noise generator using chaotic maps. IFAC Proc. Vol. 27, 053116 (2012)Google Scholar
  35. 35.
    Patidar, V.; Sud, K.K.; Pareek, N.K.: A pseudo random bit generator based on chaotic logistic map and its statistical testing. Informatica 33(4), 441–452 (2009)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Jie, X.; Chargé, P.; Fournier-Prunaret, D.; Taha, A.-K.; Long, K.P.: Chaos generator for secure transmission using a sine map and an RLC series circuit. Sci. China Ser. F Inf. Sci. 53(1), 129–136 (2010)Google Scholar
  37. 37.
    Machicao, J.; Bruno, O.M.: Improving the pseudo-randomness properties of chaotic maps using deep-zoom. Chaos 45(12), 209 (2017)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Palacios-Luengas, L.; Delgado-Gutiérrez, G.; Díaz-Méndez, J.A.; Vázquez-Medina, R.: Symmetric cryptosystem based on skew tent map. Multimed. Tools Appl. 77, 1–32 (2017)Google Scholar
  39. 39.
    Birkhoff, G.D.: Proof of the ergodic theorem. Proc. Natl. Acad. Sci. 17(12), 656–660 (1931)zbMATHCrossRefGoogle Scholar
  40. 40.
    Lasota, A.; Mackey, M.C.: Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, vol. 97. Springer, Berlin (2013)zbMATHGoogle Scholar
  41. 41.
    Lai, D.; Chen, G.; Hasler, M.: Distribution of the Lyapunov exponent of the chaotic skew tent map. Int. J. Bifurc. Chaos 9(10), 2059–2067 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Hasler, M.; Maistrenko, Y.L.: An introduction to the synchronization of chaotic systems: coupled skew tent maps. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(10), 856–866 (1997)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Zuras, D.; Cowlishaw, M.; Aiken, A.; Applegate, M.; Bailey, D.; Bass, S.; Bhandarkar, D.; Bhat, M.; Bindel, D.; Boldo, S.; et al.: IEEE standard for floating-point arithmetic. IEEE Std 754–2008, 1–70 (2008)Google Scholar
  44. 44.
    Kartalopoulos, S.V.: Annulling traps and fixed traps in chaos cryptography. In: New Technologies, Mobility and Security, 2008. NTMS’08. pp. 1–4. IEEE (2008)Google Scholar
  45. 45.
    Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical Report, DTIC Document (2001)Google Scholar
  46. 46.
    L’Ecuyer, P.; Simard, R.: Testu01: a software library in ANSI C for empirical testing of random number generators. ACM Trans. Math. Softw. 33(4), 22 (2007)zbMATHCrossRefGoogle Scholar
  47. 47.
    Bakiri, M.; Couchot, J.-F.; Guyeux, C.: CIPRNG: a VLSI family of chaotic iterations post-processings for \({\mathbb{F}}_{2}\)-linear pseudorandom number generation based on Zynq MPSoC. IEEE Trans. Circuits Syst. I 65(5), 1628–1641 (2018)Google Scholar
  48. 48.
    Bakiri, M.; Guyeux, C.; Couchot, J.-F.; Oudjida, A.K.: Survey on hardware implementation of random number generators on FPGA: theory and experimental analyses. Comput. Sci. Rev. 27, 135–153 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Akhavan, A.; Samsudin, A.; Akhshani, A.: Hash function based on piecewise nonlinear chaotic map. Chaos Solitons Fractals 42(2), 1046–1053 (2009)zbMATHCrossRefGoogle Scholar
  50. 50.
    Akhshani, A.; Akhavan, A.; Mobaraki, A.; Lim, S.-C.; Hassan, Z.: Pseudo random number generator based on quantum chaotic map. Commun. Nonlinear Sci. Numer. Simul. 19(1), 101–111 (2014)zbMATHCrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Instituto Nacional de Astrofísica, Óptica y ElectrónicaTonantzintlaMexico
  2. 2.Instituto Politécnico Nacional, ESIME Culhuacan, Sección de Estudios de Posgrado e InvestigaciónMexico CityMexico
  3. 3.Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología AvanzadaQuerétaroMexico

Personalised recommendations