Advertisement

Physical, Rheological and Stability Properties of Desulfurized Rubber Asphalt and Crumb Rubber Asphalt

  • Haibin LiEmail author
  • Bo Dong
  • Dong Zhao
  • Ping Guo
  • Juan Zhang
Research Article - Civil Engineering
  • 13 Downloads

Abstract

The objective of this study was to evaluate binder characterization of the desulfurized rubber asphalt (DRA) and crumb rubber asphalt (CRA) with different contents and compare those materials with available virgin asphalt (VA). The effects of desulfurized rubber and regular rubber on VA were investigated from the physical, rheological and stability properties point of view. The results indicated that DRA had the similar physical and rheological performances with CRA, but DRA was much better in improving storage property. The desulfurized rubber could integrate into asphalt to perform both chemical reaction and physical swelling while crumb rubber mainly dispersed incompatibly in asphalt. The chemical fusion in DRA could provide much better rutting resistance and stability performance in high temperature and increase the low-temperature performance. Although the asphalt characterization was enhanced with increasing rubber contents, excessive rubber addition could not get much better performance improvement. It was recommended that 15–20% desulfurized rubber content was optimum for designing asphalt rubber mixture to acquire improved performance and long storage stability. Overall, the long storage of DRA would provide asphalt rubber technology a much wider range of service and adaption in the road field construction.

Keywords

Asphalt binder Desulfurized rubber Crumb rubber Rheology Stability properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The projectwas supported by the Shaanxi Science and Technology Project (No. 2018SF-364) and the Qinghai Transportation Science and Technology Project (No. 2017-ZJ-763), the Fundamental Research Funds for the Central Universities of China (Nos. 310831153409, 300102218502 and 300102318401).

References

  1. 1.
    Yan, Y.; Roque, R.; Cocconcelli, C.; Bekoe, M.; Lopp, G.: Evaluation of cracking performance for polymer modified asphalt mixtures with high RAP content. Road Mater. Pavement Des. 18(Suppl. 1), 450–470 (2017).  https://doi.org/10.1080/14680629.2016.1266774 CrossRefGoogle Scholar
  2. 2.
    Behroozikhah, A.; Morafa, S.H.; Aflaki, S.: Investigation of fatigue cracks on RAP mixtures containing Sasobit and crumb rubber based on fracture energy. Constr. Build. Mater. 141, 526–532 (2017).  https://doi.org/10.1016/j.conbuildmat.2017.03.011 CrossRefGoogle Scholar
  3. 3.
    Visser, A.T.: Potential of South African road technology for application in China. J. Traffic Transp. Eng. (English Edition) 4(2), 113–117 (2017).  https://doi.org/10.1016/j.jtte.2017.03.004 CrossRefGoogle Scholar
  4. 4.
    Shirzad, S.; Aguirre, M.A.; Bonilla, L.; et al.: Mechanistic-empirical pavement performance of asphalt mixtures with recycled asphalt shingles. Constr. Build. Mater. 160, 687–697 (2018).  https://doi.org/10.1016/j.conbuildmat.2017.11.114 CrossRefGoogle Scholar
  5. 5.
    Celauro, C.; Bernardo, C.; Gabriele, B.: Production of innovative, recycled and high performance asphalt for road pavements. Resour. Conserv. Recycl. 54, 337–47 (2010).  https://doi.org/10.1016/j.resconrec.2009.08.009 CrossRefGoogle Scholar
  6. 6.
    Diab, A.; You, Z.: Small and large strain rheological characterizations of polymer-and crumb rubber-modified asphalt binders. Constr. Build. Mater. 144, 168–177 (2017).  https://doi.org/10.1016/j.conbuildmat.2017.03.175 CrossRefGoogle Scholar
  7. 7.
    Sheng, Y.; Li, H.; Geng, J.; Tian, Y.; Li, Z.; Xiong, R.: Production and performance of desulfurized rubber asphalt binder. Int. J. Pavement Res. Technol. 10, 262–273 (2017).  https://doi.org/10.1016/j.ijprt.2017.02.002. (Cross Ref)CrossRefGoogle Scholar
  8. 8.
    Zhang, F.; Hu, C.: The research for crumb rubber/waste plastic compound modified asphalt. J. Therm. Anal. Calorim. 124(2), 729–741 (2016).  https://doi.org/10.1007/s10973-015-5198-4 CrossRefGoogle Scholar
  9. 9.
    Ghavibazoo, A.; Abdelrahman, M.: Effect of crumb rubber modification on short term aging susceptibility of asphalt binder. Int. J. Pavement Res. Technol. 7(4), 297–304 (2014).  https://doi.org/10.6135/ijprt.org.tw/2014.7(4).297 CrossRefGoogle Scholar
  10. 10.
    Wu, X.; Wang, S.; Dong, R.: Lightly pyrolyzed tire rubber used as potential asphalt alternative. Constr. Build. Mater. 112, 623–628 (2016).  https://doi.org/10.1016/j.conbuildmat.2016.02.208 CrossRefGoogle Scholar
  11. 11.
    Liang, M.; Xin, X.; Fan, W.; et al.: Viscous properties, storage stability and their relationships with microstructure of tire scrap rubber modified asphalt. Constr. Build. Mater. 74, 124–131 (2015).  https://doi.org/10.1016/j.conbuildmat.2014.10.015 CrossRefGoogle Scholar
  12. 12.
    Geng, J.; Li, H.; Sheng, Y.: Changing regularity of SBS in the aging process of polymer modified asphalt binder based on GPC analysis. Int. J. Pavement Res. Technol. 7(1), 77–82 (2014).  https://doi.org/10.6135/ijprt.org.tw/2014.7(1).77 CrossRefGoogle Scholar
  13. 13.
    Gibreil, H.A.A.; Feng, C.P.: Effects of high-density polyethylene and crumb rubber powder as modifiers on properties of hot mix asphalt. Constr. Build. Mater. 142, 101–108 (2017).  https://doi.org/10.1016/j.conbuildmat.2017.03.062 CrossRefGoogle Scholar
  14. 14.
    Ge, D.; Yan, K.; You, Z.; Xu, H.: Modification mechanism of asphalt binder with waste tire rubber and recycled polyethylene. Constr. Build. Mater. 126, 66–76 (2016).  https://doi.org/10.1016/j.conbuildmat.2016.09.014 CrossRefGoogle Scholar
  15. 15.
    Fakhri, M.; Amoosoltani, E.: The effect of reclaimed asphalt pavement and crumb rubber on mechanical properties of roller compacted concrete pavement. Constr. Build. Mater. 137, 470–484 (2017).  https://doi.org/10.1016/j.conbuildmat.2017.01.136 CrossRefGoogle Scholar
  16. 16.
    Kök, B.V.; Çolak, H.: Laboratory comparison of the crumb-rubber and SBS modified bitumen and hot mix asphalt. Constr. Build. Mater. 25(8), 3204–3212 (2011).  https://doi.org/10.1016/j.conbuildmat.2011.03.005 CrossRefGoogle Scholar
  17. 17.
    Sugiyanto, G.: Characterization of asphalt concrete produced from scrapped tire rubber. Eng. J. 21(4) (2017).  https://doi.org/10.4186/ej.2017.21.4.193
  18. 18.
    Ni, Y.; Liao, M.Y.; Li, X.: Preparation process and properties of crumb rubber modified asphalt. Acta Scientiarum Naturalium Universitatis Sunyatseni 44, 33–35 (2005)Google Scholar
  19. 19.
    Yildirim, Y.: Polymer modified asphalt binders. Constr. Build. Mater. 21(1), 66–72 (2007).  https://doi.org/10.1016/j.conbuildmat.2005.07.007 CrossRefGoogle Scholar
  20. 20.
    Fu, Z.; Dang, Y.; Guo, B.; et al.: Laboratory investigation on the properties of asphalt mixtures modified with double-adding admixtures and sensitivity analysis. J. Traffic Transp. Eng. (English Edition) 3(5), 412–426 (2016).  https://doi.org/10.1016/j.jtte.2016.09.002 CrossRefGoogle Scholar
  21. 21.
    Ding, X.; Ma, T.; Zhang, W.; et al.: Experimental study of stable crumb rubber asphalt and asphalt mixture. Constr. Build. Mater. 157, 975–981 (2017).  https://doi.org/10.1016/j.conbuildmat.2017.09.164 CrossRefGoogle Scholar
  22. 22.
    Lee, S.J.; Akisetty, C.K.; Amirkhanian, S.N.: The effect of crumb rubber modifier (CRM) on the performance properties of rubberized binders in HMA pavements. Constr. Build. Mater. 22(7), 1368–1376 (2008).  https://doi.org/10.1016/j.conbuildmat.2007.04.010 CrossRefGoogle Scholar
  23. 23.
    Richardson, A.E.; Coventry, K.A.; Ward, G.: Freeze/thaw protection of concrete with optimum rubber crumb content. J. Clean. Prod. 23(1), 96–103 (2012).  https://doi.org/10.1016/j.jclepro.2011.10.013 CrossRefGoogle Scholar
  24. 24.
    Wen, Y.; Wang, Y.; Zhao, K.; et al.: The engineering, economic, and environmental performance of terminal blend rubberized asphalt binders with wax-based warm mix additives. J. Clean. Prod. 184, 985–1001 (2018).  https://doi.org/10.1016/j.jclepro.2018.03.011 CrossRefGoogle Scholar
  25. 25.
    Kataware, A.V.; Singh, D.: Evaluating effectiveness of WMA additives for SBS modified binder based on viscosity, superpave PG, rutting and fatigue performance. Constr. Build. Mater. 146, 436–444 (2017).  https://doi.org/10.1016/j.conbuildmat.2017.04.043 CrossRefGoogle Scholar
  26. 26.
    Dias, J.L.F.; Picado-Santos, L.G.; Capitão, S.D.: Mechanical performance of dry process fine crumb rubber asphalt mixtures placed on the Portuguese road network. Constr. Build. Mater. 73, 247–254 (2014).  https://doi.org/10.1016/j.conbuildmat.2014.09.110 CrossRefGoogle Scholar
  27. 27.
    Ma, T.; Zhao, Y.; Huang, X.; et al.: Characteristics of desulfurized rubber asphalt and mixture. Ksce J. Civ. Eng. 20(4), 1347–1355 (2016).  https://doi.org/10.1007/s12205-015-1195-1 CrossRefGoogle Scholar
  28. 28.
    Way, G.B.; Kaloush, K.E.; Biligiri, K.P.: Asphalt-Rubber Standard Practice Guide, 2nd edn., Prepared for the Rubber Pavements Association, USA. http://www.rubberpavements.org/Library_Information AR_Std_Practice_Guide_20111221.pdf (2012). Aaccessed 27 March 2018
  29. 29.
    Bahia, H U.; Davies, R.: Factors controlling the effect of crumb rubber on critical properties of asphalt binders. J. Assoc. Asphalt Paving Technol. 64. http://worldcat.org/issn/02702932(1995). Accessed on 27 March 2018
  30. 30.
    Dantasneto, S.; Farias, M.; Pais, J.; et al.: Influence of crumb rubber and digestion time on the asphalt rubber binders. Road Mater. Pavement Des. 7(2), 131–148 (2006).  https://doi.org/10.1080/14680629.2006.9690030 CrossRefGoogle Scholar
  31. 31.
    Lee, S.J.: Effects of reaction time on physical and chemical properties of rubber modified binders. Doctoral dissertation, Clemson University. https://www.researchgate.netpublication/242360812_Effects_of_Reaction_Time_on_Physical_and_Chemical_Properties_of_Rubber-modified_Binders (2006). Accessed on 30 March 2018
  32. 32.
    Sun, D.Q.; Li, L.H.: Factors affecting the viscosity of crumb rubberâ modified asphalt. Liquid Fuels Technol. 28(15), 1555–1566 (2010).  https://doi.org/10.1080/10916466.2010.497007 CrossRefGoogle Scholar
  33. 33.
    Ghavibazoo, A.; Abdelrahman, M.: Composition analysis of crumb rubber during interaction with asphalt and effect on properties of binder. Int. J. Pavement Eng. 14(5), 517–530 (2013).  https://doi.org/10.1080/10298436.2012.721548 CrossRefGoogle Scholar
  34. 34.
    Standard test methods of bitumen and bituminous mixtures for highway engineering (JTG E20-2011). China Communications Press, China (2011)Google Scholar
  35. 35.
    Jia, X.; Huang, B.; Bowers, B.F.; et al.: Infrared spectra and rheological properties of asphalt cement containing waste engine oil residues. Constr. Build. Mater. 50(1), 683–691 (2014).  https://doi.org/10.1016/j.conbuildmat.2013.10.012 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  • Haibin Li
    • 1
    Email author
  • Bo Dong
    • 1
  • Dong Zhao
    • 1
  • Ping Guo
    • 2
  • Juan Zhang
    • 2
  1. 1.School of Architecture and Civil EngineeringXi’an University of Science and TechnologyXi’anChina
  2. 2.Xi’an Highway Research InstituteXi’anChina

Personalised recommendations