Silver Nanoparticle-Loaded Activated Carbon as an Adsorbent for the Removal of Mercury from Arabian Gas-Condensate

  • Salawu Omobayo Adio
  • Azeem RanaEmail author
  • Basheer Chanabsha
  • Abdulmalik Adil Khalid BoAli
  • Mohammad Essa
  • Abdulaziz Alsaadi
Research Article - Chemistry


For the first time, an efficient method for the removal of mercury from Arabian gas-condensate samples was reported. Silver nanoparticles (AgNPs) functionalized with activated carbon (AC) prepared from local date-pits were used as an adsorbent. The physical and chemical properties of AgNP-AC were characterized using surface characterization techniques, and the adsorbent was evaluated under different experimental conditions. These factors considered include AgNP concentrations, contact time, the adsorbent dosage of AgNP-AC and initial mercury concentration. Langmuir adsorption isotherm, pseudo-second-order kinetics and Weber intraparticle diffusion models were used to evaluate the adsorption properties of the AgNP-AC. The results obtained revealed that at a low contact time, 25 mM AgNPs functionalized on AC provided the highest adsorption efficiency (98%) in the removal of mercury from Arabian gas-condensate. Also, it was observed that the increase in AgNP-AC dosage and initial mercury concentration plays a significant role in the mercury removal process. With a correlation coefficient of 0.9987, the adsorption process fits the Langmuir isotherm, suggesting that the adsorption is homogenous and monolayer.


Activated carbon Date-pits Silver nanoparticles Arabian gas-condensate Mercury removal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to acknowledge the Deanship of Scientific Research and the King Fahd University of Petroleum & Minerals for the research support.


  1. 1.
    Boening, D.W.: Ecological effects, transport, and the fate of mercury: a general review. Chemosphere 40, 1335–1351 (2000). CrossRefGoogle Scholar
  2. 2.
    Wilhelm, S.M.; Liang, L.; Kirchgessner, D.: Identification and properties of mercury species in crude oil. Energy Fuels 20, 180–186 (2006). CrossRefGoogle Scholar
  3. 3.
    Pacyna, E.G.; Pacyna, J.M.; Steenhuisen, F.; Wilson, S.: Global anthropogenic mercury emission inventory for 2000. Atmos. Environ. 40, 4048–4063 (2006). CrossRefGoogle Scholar
  4. 4.
    Wilhelm, S.M.; Bloom, N.: Mercury in petroleum. Fuel Process. Technol. 63, 1–27 (2000). CrossRefGoogle Scholar
  5. 5.
    Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D.G.; Telmer, K.: Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 10, 5951–5964 (2010). CrossRefGoogle Scholar
  6. 6.
    Rice, K.M.; Walker, E.M.; Wu, M.; Gillette, C.; Blough, E.R.: Environmental mercury and its toxic effects. J. Prev. Med. Public Health. 47, 74–83 (2014). CrossRefGoogle Scholar
  7. 7.
    US-EPA 1997 Mercury Study Report to Congress (EPA-452/R-97-007) Volume V: Health effects of mercury and mercury compounds.
  8. 8.
    Awad, F.S.; AbouZied, K.M.; Abou El-Maaty, W.M.; El-Wakil, A.M.; Samy El-Shall, M.: Effective removal of mercury(II) from aqueous solutions by chemically modified graphene oxide nanosheets. Arab. J. Chem. (2018).
  9. 9.
    Zabihi, M.; Ahmadpour, A.; Haghighi Asl, A.: Removal of mercury from water by carbonaceous sorbents derived from walnut shell. J. Hazard. Mater. 167, 230–236 (2009). CrossRefGoogle Scholar
  10. 10.
    Zhang, F.-S.; Nriagu, J.O.; Itoh, H.: Mercury removal from water using activated carbons derived from organic sewage sludge. Water Res. 39, 389–395 (2005). CrossRefGoogle Scholar
  11. 11.
    Zhang, F.S.; Nriagu, J.O.; Itoh, H.: Photocatalytic removal and recovery of mercury from water using TiO2-modified sewage sludge carbon. J. Photochem. Photobiol. A Chem. 167, 223–228 (2004)CrossRefGoogle Scholar
  12. 12.
    El-Naas, M.H.; Alhaija, M.A.; Al-Zuhair, S.: Evaluation of an activated carbon packed bed for the adsorption of phenols from petroleum refinery wastewater. Environ. Sci. Pollut. Res. 24, 1–10 (2017). CrossRefGoogle Scholar
  13. 13.
    Lopes, A.R.; Scheer, A.; de, P.; Silva, G.V.; Yamamoto, C.I.: Pd-Impregnated activated carbon and treatment acid to remove sulfur and nitrogen from diesel. Rev. Mater. 21, 407–415 (2016). CrossRefGoogle Scholar
  14. 14.
    Yahya, M.A.; Al-Qodah, Z.; Ngah, C.W.Z.: Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew. Sust. Energ. Rev. 46, 218–235 (2015). CrossRefGoogle Scholar
  15. 15.
    Esmaeili, A.; Saremnia, B.; Kalantari, M.: Removal of mercury(II) from aqueous solutions by biosorption on the biomass of Sargassum glaucescens and Gracilaria corticata. Arab. J. Chem. 8, 506–511 (2015). CrossRefGoogle Scholar
  16. 16.
    Alhamed, Y.A.; Bamufleh, H.S.: Sulfur removal from model diesel fuel using granular activated carbon from dates’ stones activated by ZnCl 2. Fuel 88, 87–94 (2009). CrossRefGoogle Scholar
  17. 17.
    Daud, W.: Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresour. Technol. 93, 63–69 (2004). CrossRefGoogle Scholar
  18. 18.
    Lozano-Castelló, D.; Cazorla-Amorós, D.; Linares-Solano, A.; Quinn, D.: Influence of pore size distribution on methane storage at relatively low pressure: preparation of activated carbon with optimum pore size. Carbon. 40, 989–1002 (2002). CrossRefGoogle Scholar
  19. 19.
    Al-Fehaid, K.: Saudi Arabia produces 17 percent of world’s dates (2014). Accessed 25 July 2018
  20. 20.
    Haimour, N.M.; Emeish, S.: Utilization of date stones for production of activated carbon using phosphoric acid. Waste Manag. 26, 651–660 (2006). CrossRefGoogle Scholar
  21. 21.
    Agoudjil, B.; Benchabane, A.; Boudenne, A.; Ibos, L.; Fois, M.: Renewable materials to reduce building heat loss: characterization of date palm wood. Energy Build. 43, 491–497 (2011). CrossRefGoogle Scholar
  22. 22.
    Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q.: Heavy metal removal from water / wastewater by nanosized metal oxides?: A review. J. Hazard. Mater. 212, 317–331 (2012). CrossRefGoogle Scholar
  23. 23.
    Ge, F.; Li, M.-M.; Ye, H.; Zhao, B.-X.: Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J. Hazard. Mater. 211–212, 366–372 (2012). CrossRefGoogle Scholar
  24. 24.
    Luo, G.; Yao, H.; Xu, M.; Cui, X.; Chen, W.; Gupta, R.; Xu, Z.: Carbon nanotube-silver composite for mercury capture and analysis. Energy Fuels. 24, 419–426 (2010).
  25. 25.
    Ren, W.; Zhu, C.; Wang, E.: Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Nanoscale 4, 5902 (2012). CrossRefGoogle Scholar
  26. 26.
    Ren, W.; Zhu, C.; Wang, E.: Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Nanoscale 4, 5902–5909 (2012)CrossRefGoogle Scholar
  27. 27.
    Deng, L.; Ouyang, X.; Jin, J.; Ma, C.; Jiang, Y.; Zheng, J.; Li, J.; Li, Y.; Tan, W.; Yang, R.: Exploiting the higher specificity of silver amalgamation: selective detection of mercury(II) by forming Ag/Hg amalgam. Anal. Chem. 85, 8594–8600 (2013)CrossRefGoogle Scholar
  28. 28.
    Mulfinger, L.; Solomon, S.D.; Bahadory, M.; Jeyarajasingam, A.V.; Rutkowsky, S.A.; Boritz, C.: Synthesis and Study of Silver Nanoparticles. J. Chem. Educ. 84, 322 (2007)CrossRefGoogle Scholar
  29. 29.
    Tang, C.; Sun, W.; Yan, W.: Green and facile fabrication of silver nanoparticles loaded activated carbon fibers with long-lasting antibacterial activity. RSC Adv. 4, 523–530 (2014). CrossRefGoogle Scholar
  30. 30.
    Tuan, T.Q.; Son, N.Van; Dung, H.T.K.; Luong, N.H.; Thuy, B.T.; Anh, N.T.Van; Hoa, N.D.; Hai, N.H.: Preparation and properties of silver nanoparticles loaded in activated carbon for biological and environmental applications. J. Hazard. Mater. 192, 1321–1329 (2011). CrossRefGoogle Scholar
  31. 31.
    Inbaraj, B.; Sulochana, N.: Mercury adsorption on a carbon sorbent derived from fruit shell of Terminalia catappa. J. Hazard. Mater. 133, 283–290 (2006). CrossRefGoogle Scholar
  32. 32.
    Li, Q.; Qi, Y.; Gao, C.: Chemical regeneration of spent powdered activated carbon used in decolorization of sodium salicylate for the pharmaceutical industry. J. Clean. Prod. 86, 424–431 (2015). CrossRefGoogle Scholar
  33. 33.
    Xin-hui, D.; Srinivasakannan, C.; Jin-sheng, L.: Process optimization of thermal regeneration of spent coal-based activated carbon using steam and application to methylene blue dye adsorption. J. Taiwan Inst. Chem. Eng. 45, 1618–1627 (2014). CrossRefGoogle Scholar
  34. 34.
    Kuang, M.; Yang, G.; Chen, W.; Zhang, Z.: Study on mercury desorption from silver-loaded activated carbon fibre and activated carbon fibre. J. Fuel Chem. Technol. 36, 468–473 (2008). CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of ChemistryKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Department of Civil EngineeringKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations