Advertisement

Feature Selection Using Chaotic Salp Swarm Algorithm for Data Classification

  • Ah. E. HegazyEmail author
  • M. A. Makhlouf
  • Gh. S. El-Tawel
Research Article - Computer Engineering and Computer Science
  • 31 Downloads

Abstract

Salp swarm algorithm (SSA) is a recently created bio-inspired optimization algorithm presented in 2017 which is based on the swarming mechanism of salps. Despite high performance of SSA, slow convergence speed and getting stuck in local optima are two disadvantages of SSA. This paper introduces a novel chaotic SSA algorithm (CSSA) to avoid these weaknesses, where chaotic maps are used to enhance the performance of SSA algorithm. The CSSA algorithm is incorporated with the K-nearest neighbor classifier to solve the feature selection problem, in which twenty-seven datasets are used to assess the performance of CSSA algorithm. The results confirmed that the proposed chaotic SSA (especially Tent map) produced superior results compared to standard SSA and other optimization algorithms.

Keywords

Feature selection Salp swarm algorithm Chaotic maps Bio-inspired optimization K-nearest neighbor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harvey, D.Y.; Todd, M.D.: Automated feature design for numeric sequence classification by genetic programming. IEEE Trans. Evolut. Comput. 19(4), 474–489 (2015)CrossRefGoogle Scholar
  2. 2.
    Oh, L.; Lee, J.; Moon, B.: Hybrid genetic algorithms for feature selection. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1424–1437 (2004)CrossRefGoogle Scholar
  3. 3.
    Cover, T.M.; Van Campenhout, J.M.: On the possible orderings in the measurement selection problem. IEEE Trans. Syst. Man Cybern. 7(9), 657–661 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Caruccio, L.; Deufemia, V.; Polese, G.: On the discovery of relaxed functional dependencies. In: Proceedings of the 20th International Database Engineering and Applications Symposium, pp. 53–61 (2016)Google Scholar
  5. 5.
    Deufemia, V.; Caruccio, L.; Polese, G.: Evolutionary mining of relaxed dependencies from big data collections. In: Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics, p. 5 (2017)Google Scholar
  6. 6.
    Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)CrossRefGoogle Scholar
  7. 7.
    Fallahi, K.; Raoufi, R.; Khoshbin, H.: An application of Chen system for secure chaotic communication based on extended Kalman filter and multi-shift cipher algorithm. Commun. Nonlinear Sci. Numer. Simul. 13(4), 763–781 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Yang, D.; Li, G.; Cheng, G.: On the efficiency of chaos optimization algorithms for global optimization. Chaos, Solitons Fractals 34(4), 1366–1375 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Emary, E.; Zawbaa, H.M.: Impact of chaos functions on modern swarm optimizers. PloS ONE 11(7), e0158738 (2016)CrossRefGoogle Scholar
  10. 10.
    Zhou, Z.; Zhu, S.; Zhang, D.: A novel K-harmonic means clustering based on enhanced Firefly algorithm. In: International Conference on Intelligent Science and Big Data Engineering, vol. 9243, pp. 140–149. Springer (2015)Google Scholar
  11. 11.
    Gandomi, A.H.; Yang, X.S.; Talatahari, S.; Alavi, A.H.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Saremi, S.; Mirjalili, S.; Lewis, A.: Biogeography-based optimisation with chaos. Neural Comput. Appl. 25(5), 1077–1097 (2014)CrossRefGoogle Scholar
  13. 13.
    Gandomi, A.H.; Yang, X.S.: Chaotic bat algorithm. J. Comput. Sci. 5(2), 224–232 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Abdullah, A.S.; Ramya, C.; Priyadharsini, V.; Reshma, C.; Selvakumar, S.: A survey on evolutionary techniques for feature selection. In:Conference on Emerging Devices and Smart Systems (ICEDSS), pp. 58–62 (2017)Google Scholar
  15. 15.
    Xue, B.; Zhang, M.; Browne, W.N.; Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evolut. Comput. 20(4), 606–626 (2016)CrossRefGoogle Scholar
  16. 16.
    Zhang, Y.; Gong, D.; Hu, Y.; Zhang, W.: Feature selection algorithm based on bare bones particle swarm optimization. Neurocomputing 148, 150–157 (2015)CrossRefGoogle Scholar
  17. 17.
    Aziz, M.A.E.; Hassanien, A.E.: Modified cuckoo search algorithm with rough sets for feature selection. Neural Comput. Appl. 29(4), 925–934 (2016)CrossRefGoogle Scholar
  18. 18.
    Hegazy, A.E.; Makhlouf, M.; El-Tawel, G.S.: Dimensionality reduction using an improved whale optimization algorithm for data classification. Int. J. Mod. Educ. Comput. Sci. 10(7), 37 (2018)CrossRefGoogle Scholar
  19. 19.
    Emary, E.; Zawbaa, H.M.; Hassanien, A.E.: Binary ant lion approaches for feature selection. Neurocomputing 213, 54–65 (2016)CrossRefGoogle Scholar
  20. 20.
    Wang, G.; Guo, L.; Gandomi, A.H.; Hao, G.; Wang, H.: Chaotic Krill Herd algorithm. Inf. Sci. 274, 17–34 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mitić, M.; Vuković, N.; Petrović, M.; Miljković, Z.: Chaotic fruit fly optimization algorithm. Knowl Based Syst 89, 446–458 (2015)CrossRefGoogle Scholar
  22. 22.
    Zawbaa, H.M.; Emary, E.; Grosan, C.: Feature selection via chaotic Antlion optimization. PLOS ONE 11(3), e0150652 (2016)CrossRefGoogle Scholar
  23. 23.
    Chuang, L.Y.; Yang, C.H.; Li, J.C.: Chaotic maps based on binary particle swarm optimization for feature selection. Appl. Soft Comput. 11(1), 239–248 (2011)CrossRefGoogle Scholar
  24. 24.
    Hegazy, A.E.; Makhlouf, M.; El-Tawel, G.S.: Improved salp swarm algorithm for feature selection. J. King Saud Univ. Comput. Inf. Sci. (2018).  https://doi.org/10.1016/j.jksuci.2018.06.003
  25. 25.
    Li, M.; Du, W.; Yuan, L.: Feature selection of face recognition based on improved chaos genetic algorithm. In: 2010 Third international symposium on electronic commerce and security, pp. 74–78. IEEE (2010)Google Scholar
  26. 26.
    Ewees, A.A.; Aziz, M.A.E.; Hassanien, A.E.: Chaotic multi-verse optimizer-based feature selection. Neural Comput. Appl. (2017).  https://doi.org/10.1007/s00521-017-3131-4
  27. 27.
    Emary, E.; Zawbaa, H.M.; Hassanien, A.E.: Binary grey wolf optimization approaches for feature selection. Neurocomputing 172, 371–381 (2016)CrossRefGoogle Scholar
  28. 28.
    Chuang, L.Y.; Chang, H.W.; Tu, C.J.; Yang, C.H.: Improved binary PSO for feature selection using gene expression data. Comput. Biol. Chem. 32(1), 29–38 (2008)zbMATHCrossRefGoogle Scholar
  29. 29.
    “UCI Machine Learning Repository: Data Sets.” [Online]. Available: http://archive.ics.uci.edu/ml/index.php. Accessed 14 Feb 2018
  30. 30.
    Hastie, T.; Friedman, J.; Tibshirani, R.: The Elements of Statistical Learning, vol. 1. Springer, Berlin (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Ah. E. Hegazy
    • 1
    Email author
  • M. A. Makhlouf
    • 1
    • 2
  • Gh. S. El-Tawel
    • 1
  1. 1.Faculty of Computers and InformaticsSuez Canal UniversityIsmailiaEgypt
  2. 2.Faculty of Computers and InformaticsNahda UniversityBeni SuefEgypt

Personalised recommendations