Advertisement

Pressure-Driven Flow of Cross Fluid Along a Stationary Plate Subject to Binary Chemical Reaction and Arrhenius Activation Energy

  • M. MustafaEmail author
  • Aiman Sultan
  • Mahmood Rahi
Research Article - Mechanical Engineering
  • 22 Downloads

Abstract

The present paper deals with the flow of Cross rheological fluid along a stationary rigid plate caused by stream-wise pressure gradient. Flow field is affected by uniform magnetic field acting normal to the plate axis. Interaction of flow field with chemically reacting solute is modeled through the advection–diffusion equation in which temperature dependency of the reaction rate on activation energy is considered. Energy equation containing source term and variable thermal conductivity is treated. Locally similar solutions are obtained and interpreted for a certain range of embedded parameters. Shear-thinning aspect of Cross fluid is apparent from the computational results. A monotonic decay in vertical velocity is noticed for increasing values of flow behavior index (n) which, in turn, leads to pronounced heat conduction. An important finding is that activation energy of chemical reaction remarkably alters the solute concentration near the plate.

Keywords

Generalized Newtonian fluid Chemical reaction Activation energy Falkner–Skan flow 

List of Symbols

\(\left( x,y \right) \)

Cartesian coordinate system

uv

Velocity components along x- and y-directions, respectively

K

Consistency index

f

Dimensionless stream function

\(B_{0}\)

Magnetic flux density

a

Positive constant

M

Magnetic interaction parameter

\(c_{p}\)

Specific heat

k(T)

Variable thermal conductivity

n

Flow behavior index

\(E_{a}\)

Activation energy

m

Fitted rate constant

s

Heat source/sink

E

Dimensionless activation energy

Pr

Prandtl number

\(Re_{x}\)

Local Reynolds number

We

Local Weissenberg number

Sc

Schmidt number

T

Fluid temperature

C

Solute concentration

\(C_{f}\)

Skin friction coefficient

\(Nu_{x}\)

Local Nusselt number

\(Sh_{x}\)

Local Sherwood number

\(\tau _{w}\)

Shear stress at the plate

\(q_{w}\)

Wall heat flux

\(j_{w}\)

Wall mass flux

\(u_{e}(x)\)

Velocity of the outer flow

Greek Symbols

\(\dot{\gamma }\)

Shear rate

\(\eta \)

Similarity variable

\(\theta \)

Dimensionless temperature

\(\phi \)

Dimensionless concentration

\(\eta _{0}\)

Viscosity at zero shear rate

\(\eta _{\infty }\)

Infinite shear rate viscosity

\(\delta \)

Temperature difference parameter

\(\sigma _{1}\)

Fluid electrical conductivity

\(\epsilon \)

Dimensionless constant

\(\rho \)

Fluid density

\(\kappa \)

Boltzmann constant

\(\sigma \)

Dimensionless reaction parameter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bird, R.B.; Curtiss, C.F.; Armstrong, R.C.; Hassager, O.: Dynamics of Polymeric Liquids. Wiley, Newyork (1987)Google Scholar
  2. 2.
    Cross, M.M.: Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J. Colloid Sci. 20, 417–437 (1965)CrossRefGoogle Scholar
  3. 3.
    Carreau, P.J.: Rheological equations from molecular network theories. Trans. Soc. Rheol. 116, 99–127 (1972)CrossRefGoogle Scholar
  4. 4.
    Xie, J.; Jin, Y.C.: Parameter determination for the Cross rheology equation and its application to modeling non-Newtonian flows using the WC-MPS method. Eng. Appl. Comput. Fluid Mech. 10, 111–129 (2016)Google Scholar
  5. 5.
    Khan, M.I.; Waqas, M.; Hayat, T.; Alsaedi, A.: Magneto-hydrodynamical numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface. Phys. Chem. Liq. 7, 1824–1827 (2017).  https://doi.org/10.1080/00319104.2017.1367791 CrossRefGoogle Scholar
  6. 6.
    Khan, M.; Manzoor, M.; Rahman, M.: On axisymmetric flow and heat transfer of Cross fluid over a radially stretching sheet. Res. Phys. 7, 3767–3772 (2017)Google Scholar
  7. 7.
    Khan, M.I.; Hayat, T.; Khan, M.I.; Alsaedi, A.: Activation energy impact in nonlinear radiative stagnation point flow of Cross nanofluid. Int. Commun. Heat Mass Transf. 91, 216–224 (2018)CrossRefGoogle Scholar
  8. 8.
    Siddiqa, S.; Hossain, M.A.; Pop, I.: Conjugate thermal and mass diffusion effect on natural convection flow in presence of strong cross magnetic field. Int. J. Heat Mass Transf. 55, 5120–5132 (2012)CrossRefGoogle Scholar
  9. 9.
    Afify, A.; Elgazery, N.S.: Effect of a chemical reaction on magnetohydrodynamic boundary layer flow of a Maxwell fluid over a stretching sheet with nanoparticles. Particuology 29, 154–161 (2016)CrossRefGoogle Scholar
  10. 10.
    Zhuang, Y.H.; Yu, H.Z.; Zhu, Q.Y.: A thermal non-equilibrium model for 3D double diffusive convection of power-law fluids with chemical reaction in the porous medium. Int. J. Heat Mass Transf. 115, 670–694 (2017)CrossRefGoogle Scholar
  11. 11.
    Malik, R.; Khan, M.: Numerical study of homogeneous-heterogeneous reactions in Sisko fluid flow past a stretching cylinder. Res. Phys. 8, 64–70 (2018)Google Scholar
  12. 12.
    Hayat, T.; Khan, M.W.A.; Khan, M.I.; Waqas, M.; Alsaedi, A.: Impact of chemical reaction in fully developed radiated mixed convective flow between two rotating disk. Physica B: Cond. Matter 538, 138–149 (2018)CrossRefGoogle Scholar
  13. 13.
    Adesanya, S.O.; Ogunseye, H.A.; Jangili, S.: Unsteady squeezing flow of a radiative Eyring–Powell fluid channel flow with chemical reactions. Int. J. Thermal Sci. 125, 440–447 (2018)CrossRefGoogle Scholar
  14. 14.
    Hayat, T.; Waqas, M.; Ijaz Khan, M.; Alsaedi, A.: Impacts of constructive and destructive chemical reactions in magnetohydrodynamic (MHD) flow of Jeffrey liquid due to nonlinear radially stretched surface. J. Mol. Liq. 225, 302–310 (2017)CrossRefGoogle Scholar
  15. 15.
    Lu, J.; Das, S.; Peters, E.A.J.F.; Kuipers, J.A.M.: Direct numerical simulation of fluid flow and mass transfer in dense fluid-particle systems with surface reactions. Chem. Eng. Sci. 176, 1–18 (2018)CrossRefGoogle Scholar
  16. 16.
    Hashim, M.Khan; Alshomrani, A.S.; Haq, R.: Investigation of dual solutions in flow of a non-Newtonian fluid with homogeneous–heterogeneous reactions: critical points. Eur. J. Mech. B/Fluids 68, 30–38 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Turkyilmazoglu, M.: Analytical solutions to mixed convection MHD fluid flow induced by a nonlinearly deforming permeable surface, Commun. Nonlinear Sci. Numer. Simul. In press (2018).  https://doi.org/10.1016/j.cnsns.2018.04.002
  18. 18.
    Khan, J.A.; Mustafa, M.: A numerical analysis for non-linear radiation in MHD flow around a cylindrical surface with chemically reactive species. Res. Phys. 8, 963–970 (2018)Google Scholar
  19. 19.
    Lu, D.C.; Ramzan, M.; Bilal, M.; Chung, J.D.; Farooq, U.: A numerical investigation of 3D MHD rotating flow with binary chemical reaction, activation energy and non-fourier heat flux. Commun. Theor. Phys. 70, 89–96 (2018)CrossRefGoogle Scholar
  20. 20.
    Bestman, R.: Natural convection boundary layer with suction and mass transfer in a porous medium. Int. J. Energy Res. 14, 389–396 (1990)CrossRefGoogle Scholar
  21. 21.
    Maleque, K. A.: Effects of binary chemical reaction and activation energy on MHD boundary layer heat and mass transfer flow with viscous dissipation and heat generation/absorption, ISRN Thermodyn. 2013 (2013), Article ID 284637.  https://doi.org/10.1155/2013/284637
  22. 22.
    Maleque, K.A.: Effects of exothermic/endothermic chemical reactions with Arrhenius activation energy on MHD free convection and mass transfer flow in presence of thermal radiation. J. Thermodyn. 2013 (2013), Article ID 629516.  https://doi.org/10.1155/2013/692516
  23. 23.
    Awad, F.G.; Motsa, S.; Khumalo, M.: Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy. PloS One 9, e107622 (2014).  https://doi.org/10.1371/journal.pone.0107622 CrossRefGoogle Scholar
  24. 24.
    Shafique, Z.; Mustafa, M.; Mushtaq, A.: Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy. Res. Phys. 6, 627–633 (2016)Google Scholar
  25. 25.
    Abbas, Z.; Sheikh, M.; Motsa, S.S.: Numerical solution of binary chemical reaction on stagnation-point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation. Energy 95, 12–20 (2016)CrossRefGoogle Scholar
  26. 26.
    Mustafa, M.; Mushtaq, A.; Hayat, T.; Alsaedi, A.: Numerical study of MHD viscoelastic fluid flow with binary chemical reaction and Arrhenius activation energy. Int. J. Chem. React. Eng. 15 (2016).  https://doi.org/10.1515/ijcre-2016-0131.
  27. 27.
    Mustafa, M.; Khan, J.A.; Hayat, T.; Alsaedi, A.: Buoyancy effects on MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. Int. J. Heat Mass Transf. 108, 1340–1346 (2017)CrossRefGoogle Scholar
  28. 28.
    Ramzan, M.; Bilal, M.; Kanwal, S.; Chung, J.D.: Effects of variable thermal conductivity and non-linear thermal radiation past an Eyring–Powell nanofluid flow with chemical reaction. Commun. Theor. Phys. 67, 723–731 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Andersson, H.I.; Aarseth, J.B.: Sakiadis flow with variable fluid properties revisited. Int. J. Eng. Sci. 45, 554–661 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Shampine, L. F.; Reichelt, M. W.; Kierzenka, J.: Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. https://www.mathworks.com/help/matlab/ref/bvp4c.html

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.School of Natural Sciences (SNS)National University of Sciences and Technology (NUST)IslamabadPakistan
  2. 2.Higher Colleges of Technology (HCT)Abu DhabiUnited Arab Emirates

Personalised recommendations